“Vasile Alecsandri” University of Bacau
Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics
Vol. 34 (2024), No. 1, 57 - 62

NEW UTILITY LIBRARIES FOR LINUX WITH
COMPLEX DATA TYPES AND SYSTEM RESOURCES

ALEXANDRU PINTEA

Abstract. Operating systems have different limitations for every
primitive data-type regarding the maximum value that can be stored.
For numeric data types, those limitations could be eliminated by con-
verting to string. New C++ utility libraries are provided for both
complex data types and system resources. One of the introduced C++
libraries is able to perform operations with numbers stored in string.
Another, stores data in its self defined data type. The last one provides
Linux compatibility for C++, taking care of various C++ function
definitions.

1. INTRODUCTION AND PRELIMINARIES

Data types have always been a part of programming and lately they
have become increasingly customisable. The innovation that led to
them becoming more customisable is of course Object Oriented Pro-
gramming, OOP; even so, that does not solve all issues that storing
data might pose, since various limitations of the primitive data-types
are still in effect. With open-source operating systems, every appli-
cation is welcome and those that have a terminal-based UI are most
cross-platform.

Most primitive data types are stored on a memory space that con-
sists of a limited number of bytes, which limits the maximum amount
of data that can be stored [1].

Keywords and phrases: code optimization, programming.
(2020)Mathematics Subject Classification: 97R70, 68N19,
97R10

57

58 ALEXANDRU PINTEA

That seems to apply more to numeric data types rather than to string
data types. Therefore, if more digits need to be added to a number
that could be done by converting them to a string for later processing.
That is precisely what the new string C++ library, strings does; it
computes operations with numbers stored in strings [2].

To extend the capabilities of OOP data types, the introduced multi
library provides the user with a data type that can store any number
of variables in a string. While the improved string C++ library,
strings converts numbers to strings and performs operations with
them, the multi library provides one data type that can store multiple
data types in variables that can be added and deleted (unlike with
OOP declarations). Therefore, multi library stores data-types e.g.
int, bool, string and double in a string [2].

As a pioneering programming language (which led to the OOP revo-
lution), C++ does not aim to provide easy-to-use bindings with oper-
ating system commands, in order to let the user have more flexibility.
However, when communicating with the operating system becomes a
constant necessity, certain functions need be made to respond to such
a need.

The new lnux C++ library provides the user with functions that
use the Linux operating system to easily perform operations native to
the system command line. Even so, conversions and validations are
performed to make sure that the user is able to perform these actions
smoothly, avoiding system errors [2].

In order to reason about low-level programming a semantic that
“can deal with programs that are not statically type-correct” is re-
quired [1]. That shows that type does not always matter, meaning
that using numbers stored in strings can be a sustainable and effective
choice for large numbers. The C++ API, Data Type Encoding Lan-
guage (DTEL) "fully leverages the C++ type system to catch many
encoding errors at compile time” [3]. Such error signalising is incorpo-
rated in multi library, which is able to validate available data types
and names [2].

C++ 11 was improved in [4] with an implementation of tensors
of arbitrary rank. In order to provide convenient mathematical syn-
tax an expression template was introduced based on the array class
template. Therefore, C++ language gets another layer “when deal-
ing with algebraic objects and their operations, without compromising
performance” [4].

NEW UTILITY LIBRARIES FOR LINUX 59

Performance as well as elimination of limits provided by primitive
data types, is essential for such algebraic objects. Therefore using
numbers stored in strings is preferable when dealing with extremely
large numbers (or lots of decimals). In a recent C++ book [8] operator-
overloading facilities are illustrated. There are other programming
languages (e.g. Python [6]) which have already implemented arbitrary-
length integers nativly.

In [5] was introduced a new library defining a function that converts
a string representing a real number to an interval according to a spe-
cific algorithm. Such conversions were implemented here for 1nux and
multi libraries, to convert string data [2].

As Linux kernel grows in size it has maintenance problems. An
object-oriented wrapper based approach to Linux kernel providing OO
abstractions to external modules was proposed in [7]. The proposal is
beneficial in terms of reusability and extensibility. The C++ multi
library provides such an OO abstraction, by also letting the user cus-
tomise the variables provided [2].

2. MAIN RESULTS

To facilitate the work with complex data types in C+-+ and the
efficient use over the Linux shell, new libraries are presented: multi,
strings and lnux [2].

multi library

The multi library can keep variables in a string, enabling it to
keep as many variables as needed. It provides functions that can be
used to verify if a variable is available in the string, as well as getting
/ setting it. Other provided functions include implementations for
leaving only numeric, symbols or alphabetic characters in a string, as
well as converting any of the available data types (long, bool, double)
to and out of the string.

The multi class facilities include adding or getting multiple (int,
long, double, float, bool, char or string) variables to/out from
the multi_string. It can also save/load it’s multi_string, which
contains all the variables.

The multi string can be stored in a file for further use, reduce the
whitespace of a string and use special identifiers (words, numeric, and
chars) for the string data-type to separate alphabetic, numeric and
symbolic characters. It is able to store arrays too.

60 ALEXANDRU PINTEA

long long_a = 19999;

multi_1.add(long_a, get_name (long_a));
multi_1.get("long_a", "long", long_a);
cout<<long_a;

multi_1.del("long_a", "long");

Convert the given string to multiple variables:

void make_types ()

{

string data=this->multi_string;

this->multi_string="";
this->multi_string=this->multi_string+"words string "

+ leave_words(data) +"\n";
this->multi_string=this->multi_string+"numerics double "
+ leave_numerics(data)+"\n";
this->multi_string=this->multi_string+"chars char "

+ leave_chars(data)+"\n";

¥

Example of a multi _string (encoding: variable name or data-type
or data - array or not)

a_int int 10 9 3 2 4

a_bool bool true

a_double double 1.07 9.1 -3.024 2.0099999 4.1
a_float float 1.7 9.1 3.0239999 2.0099999 4.0999999
a_char char a b1l r

a_string string ab b 1l r

long_a long 19999

Example of error notification: e.g. a variable name is already set:
long_a long.

strings library

The strings library has functions for adding or subtracting two
numbers (integer or double). It can also check if the string represents
an even / odd / positive or negative number.

While adding / subtracting char-stored digits, it can tackle re-
minders and preserve the size of the given numbers by not ever con-
verting to any data-type besides string. In other words, even when
separating the decimal and integer part of a double, the string data-
type is used to both give and receive data. Such numbers can have
any length, in the computation limits.

Most of its functions use multiple cases to decide how to perform the
addition or subtraction or other operations (decide which number is

NEW UTILITY LIBRARIES FOR LINUX 61

larger, remove decimals, remove sign, and decide if the number has
decimals). For the addition and subtraction functions, conditions for
different types of numbers are included.

lnux library

The proposed library called 1nux is a C++ library for Linux that
makes it easier for C++ to communicate with the command line. It is
able to decide if a file or folder is at a location, give C++ the USER
and PATH of the Linux system, determine filesize of files or folders,
count lines of a file, and give C++ every filename within a certain
folder. It uses the C++ convert library from [5]. The library also
has C++ functions to perform basic commands as mkdir, chown,
chmod, rm, cp, ls and even xrandr (used for screen brightness).

Verifications are done when needed; for example to validate the
fact that a folder to be created with mkdir does not already exist
and also decide if the permission that is given to chmod is valid. It
also verifies for the availability of files or folders before attempting to
determine their size (using is_folder() and is_file() functions that
check every filename in a certain folder to find the required one). It
communicates with the Linux system by outputting input data to a
file, executing Linux commands and then getting the results out of a
file that was initially used for input:
string command_size_folder="\nSIZE=$(du -s \"$FILE\")

\nprintf $SIZE >> \"$PWD/cpp-sh\"";

char command_linux[] = "IFS= read -r

filepath < \"files-1s\"\ncd $filepath\nls_data=$(1ls -m)

\ncd ../\nrm -R files-1ls\nfor value in $1s_data\ndo

\nprintf $value >> files-1ls\ndone";

Commands are given either using a char array, or through conversion
of the string data-type to a char array, since the C++ command only
takes char arrays for an argument.

62

ALEXANDRU PINTEA

3. CONCLUSIONS

Libraries are useful for performing certain actions efficiently. Non-
primitive data types provide a good format for modeling any appli-
cation data (as in the multi and strings libraries). System com-
patibility libraries (such as lnux) enable programming languages to
perform system-related operations seamlessly. The presented libraries
enable their users to extend C++ capabilities beyond the limitations
primitive data types, or beyond the scope of the C++ environment,
towards system functionalities.

1]

REFERENCES

M.Hohmuth and H.Tews, The Semantics of C++4+ Data Types: To-
wards Verifying low-level System Components, Conference: Theorem
Proving in Higher Order Logics (TPHOLs) (2003), 127-144.

A. Pintea. Code, online at Github, https://github.com/AlexandruPintea2000/
Cpp-libraries-applications/Libraries/

J.Graham, Creating an HLA 1516 Data Encoding Library using
C++4 Template Metaprogramming Techniques, Spring Simulation In-
teroperability Workshop Proceedings, (2007), 07S-SIW-035.

A .M.Aragon, A C++11 implementation of arbitrary-rank tensors for
high-performance computing. Comp.Phys.Comm. 185, 6(2014), 1681—
1696.

M.A. Jankowska, C++ Library for Floating-Point Interval Arith-
metic. User and Reference Guide. Poznan University, Tech.Rep. 2018.
Lindstrom, G.. (2005). Programming with Python. IT Professional. 7,5
(2005), 10-16.

V. Reddy, Object-oriented wrappers for the Linux kernel. Software-
Practice and Experience, 38(2008),1411-1427.

A.Singht, P.Manisha, K.Renu. (2017). C++ Programming - Principles
of Design an Implementation. Mirdashti Publisher, 2017.

Coventry University
Priory Street, Coventry, CV1, UK
e-mail alexandru.pintea@ieee.org

