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Abstract. The simplest tool which man could found to interpret
space is the concept of distance. The concept of distance gives a
sense of duality and helps us to decide the positional difference be-
tween points. Our view is that, if the effect of the observer’s point is
counted in measuring of distances between different points, then the
measure may be more relevant. Keeping in mind the properties of
metric space, we tried to establish new properties of distance by in-
cluding the observer’s point. Based on properties of angles, Sonwane
and Prasad [29] established a mathematical structure called metron
as a generalization of metric space. The present paper continues the
study of Metron and proposes various metronlike structures by weak-
ening some properties of metrons. The relationships between metron
and metron-like structures are discussed by providing appropriate ex-
amples and diagrams.
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1. INTRODUCTION AND PRELIMINARIES

Metric spaces [11] are one of the basic structures in mathemat-
ics. During the past hundred and fifteen years many mathemati-
cians such as Kurepa [16], Azam, Fisher and Khan [6], Beg, Abbas
and Nazir [7], Gähler [12], Matthews [17, 18], Huang and Zhang[13],
Azam Arshad and Beg[5], Karapinar and Erhan[15], Sedghi and his
coworkers[23, 24], Zand and Nezhad [31], Ahmed, Omran and Asad [2],
Stoltenberg [30], Roldán and Karapinar [21], Mustafa and Sims [20],
Aghajani and his coworkers [1], Mukheimer [19], Dhage [10], Ceder
[8], An and his coworkers [3], Asadi, Karapinar and Salimi [4], Salimi
and Vetro [22], Shah and Husain [25], Smirnov [28], Shukla [26, 27],
Jleli and Samet[14], Deza and Deza [9], and others proposed various
generalizations of metric spaces.

Definition 1.1. [11] Let X be a non empty set and d : XxX → R
such that:

(D1) d(x,y)≥ 0,∀x, y ∈ X ,( Property of non negativity).
(D2) x=y ⇒ d(x,y)=0,∀x, y ∈ X (Vanishing property).
(D3) d(x,y)=0 ⇒ x=y ,∀x, y ∈ X (Identification or separation prop-

erty).
(D4) d(x,y)= d(y,x) ∀x, y ∈ X (Symmetric property).
(D5) d(x,z)≤ d(x,y)+d(y,z) ∀x, y, z ∈ X (Triangle inequality prop-

erty).

Then d is called a metric on X and the pair(X,d) is called a metric
space.
Metric-like structures that are assumed to possess (at least) some prop-
erties of a metric space are presented in the following table.

Table 1. Metic like structures with their properties

Structure/ Properties D1 D2 D3 D4 D5
Metric space X X X X X
Semi metric space X X X X
Quasi metric space X X X X
Quasi semi metric space X X X

Recently Sonwane and Prasad [29] established a new mathematical
structure called Metron as a generalization of metric spaces as follows:

Definition 1.2. [29] Let X be a nonempty set and m : X×X×X → R
(where R is the set of all real numbers) defined with



METRONLIKE STRUCTURES 79

(M1) m〈x, y, z〉 ≥ 0, ∀x, y, z ∈ X (Property of non-negativity).
(M2) m〈x, y, z〉 = 0, if x = z (Vanishing Property).
(M3) if x 6= z, than ∃ y ∈ X such that m〈x, y, z〉 > 0 (Survival

property).
(M4) if m〈u, x, v〉 = m〈u, y, v〉, ∀ u, v ∈ X then x = y (Identification

property).
(M5) m〈x, y, z〉 = m〈z, y, x〉, ∀ x, y, z ∈ X (Symmetric Property).
(M6) m〈x, y, z〉 ≤ m〈x, y, u〉+m〈u, y, z〉, ∀ x, y, z, u ∈ X (Property

of Triangle inequality).
(M7) m〈x, y, z〉 ≤ m〈x, u, z〉+m〈u, z, x〉+m〈z, x, u〉, ∀ x, y, z, u ∈ X

(property of Triangular chain inequality).

Then the function m is called a metron function on X and the set X
associated with m is called a metron with metron function m, which is
denoted by (X,m). The value m〈x, y, z〉 is called the metron value at
the triple 〈x, y, z〉 under m on X the points x and z are called Marked
points of the triple and y is called the Base point of the triple.

Remark 1.3. [29] Properties M3 and M4 in the definition of metron
are equivalent to the following properties respectively:.

M3(A) If m〈x, y, z〉 = 0, ∀y ∈ X ⇒ x = z (Implication of Equality
Property; i.e. IE-Property).

M4(A) Whenever x 6= y, then ∃u, v ∈ X, such that m〈u, x, v〉 6=
m〈u, y, v〉 (Implication of Nonequality property; i.e. IN-
Property).

Lemma 1.4. [29] Let x, y, a, b ∈ R are elements of arbitrary choice,
then

||x−b|−|b−y|| ≤ |x−y| ≤ ||x−a|−|a−y||+||a−y|−|y−x||+||y−x|−|x−a||.
In the study of metron structures, it is very natural to study those

structures which are formed on the basis of some of the properties of
metron or those which require additional properties with a metron.
These variations will help us to have an analytical study of metrons.
The examples and theorems presented ahead lead us to study the
natural development. Situations as such always help one to look the
structures more deeply and the structural picture becomes more trans-
parent. The present paper continue the study of metron and proposed
metronlike structures by weakening some properties of Metron. In sec-
tion 2, definitions and sufficient number of examples are presented to
establish metronlike structures them rigorously. In section 3, a hierar-
chy of these structures is established and a lattice of these structures
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is formed. The section 4 presented the equivalences and convertibil-
ities of metriclike spaces and metronlike structures. The section 5
constructed some metrons from weak variations of metron.

2. METRONLIKE STRUCTURES: DEFINITIONS AND
EXAMPLES

Definition 2.1. Let X be a nonempty set and m : X ×X ×X → R.
We call (X,m) a metronlike structure if m has at least properties (M1)
and (M2).

Example 2.2. Let X be a nonempty set and define f : X → R and

m1〈x, y, z〉 = ||f(x)− f(y)| − |f(y)− f(z)|| ∀x, y, z ∈ X.

Then (X,m1) is a metronlike structure because m1 satisfies the prop-
erties M1 and M2.

Metronlike structures that are assumed to possess (at least) some
properties of a metron are presented in the following table.

Table 2. Metronlike structures with their properties

Structure/ Properties M1 M2 M3 M4 M5 M6 M7
Metron X X X X X X X
Metronlike X X
Semi-metron X X X X X
Sur-semi-metron X X X X X X
Ide-semi-metron X X X X X X
Pre-metron X X X X X X
Semi-pre-metron X X X X
Sur-semi-pre-metron X X X X X
Ide-semi-pre-metron X X X X X

Example 2.3. Let X =]0,∞[∪{−1} and f(x) = |x|, ∀x ∈ X. Define
m1〈x, y, z〉 = ||f(x)−f(y)|−|f(y)−f(z)||, ∀x, y, z ∈ X. Then (X,m1)
is a semi-metron. For, the properties M1, M2, M5 and M6 hold
obviously. We see that M3 and M4 do not hold because

m1〈−1, y, 1〉 = ||| − 1| − |y|| − ||y| − |1||| = ||1− |y|| − ||y| − 1|| = 0,

for all y ∈ X and m1〈u, 1, v〉 = m1〈u,−1, v〉, ∀u, v ∈ X but 1 6= −1.
Lastly, to prove M7, we note that m1〈x, y, z〉 = m1〈x, y, z〉, when |x| =
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x, etc; because ‖x‖ = |x| so |x| = |x| or f(x) = f(x).
Hence

m1〈x, y, z〉 =m1〈x, y, z〉
=||x− y| − |y − z||
≤||x− u| − |u− z||+ ||u− z| − |z − x||+ ||z − x| − |x− u||
≤m1〈x, u, z〉+m1〈u, z, x〉+m1〈z, x, u〉
=m1〈x, u, z〉+m1〈u, z, x〉+m1〈z, x, u〉 ∀x, y, z, u ∈ X.

Thus M7 property holds. Therefore, we have that (X,m1) is a
semi-metron.

Example 2.4. Let X = R and f(x) = |x|, ∀x ∈ R, define
m1〈x, y, z〉 = ||f(x)−f(y)|−|f(y)−f(z)||, ∀ x, y, z ∈ X, then (X,m1)
is a semi-metron. The justification is on the lines of Example 2.3.

Example 2.5. Let X be a non empty set and f : X → R with f
is a non-injective map. Define m1〈x, y, z〉 = ||f(x) − f(y)| − |f(y) −
f(z)||, ∀ x, y, z ∈ X, then (X,m1) is a semi-metron. The justification
are on the lines of Example 2.3.

Example 2.6. Let X = R and f : X → R given by f(x) = |x|, ∀x ∈
X, define m2〈x, y, z〉 = ||f(x) − y| − |y − f(z)||, ∀ x, y, z ∈ X, then
the properties M1, M2, M5 and M6 clearly hold. For the remaining
properties, situations are as follows-
M3 does not hold, as m2〈−1, y, 1〉 = 0, ∀y ∈ X.
M4 does not hold, as

m2〈u,−1, v〉 =||f(u)− (−1)| − |(−1)− f(v)||
=||f(u) + 1| − | − 1− f(v)||
=||f(u) + 1| − |f(v) + 1||
=|(f(u) + 1)− (f(v) + 1)|, for f(u), f(v) ≥ 0;

=|f(u)− f(v)|
=|(f(u) + 2)− (f(v) + 2)|
=||(f(u)− (−2)| − |(−2)− f(v)||
=m2〈u,−2, v〉 ∀ u, v ∈ X.

Thus we have that, m2〈u,−1, v〉 = m2〈u,−2, v〉 ∀u, v ∈ X, where as
−2 6= −1. Similarly m2〈u,−x, v〉 = m2〈u,−y, v〉 ∀u, v ∈ X, and
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x > 0, y > 0, x 6= y. For the property M7, note that

m2〈x, y, z〉

=

{
||f(x)− y| − |y − f(z)|| = ||f(x)− f(y)| − |f(y)− f(z)||, if y ≥ 0

||f(x)− y| − |y − f(z)|| ≥ ||f(x)− f(y)| − |f(y)− f(z)||, if y < 0

So,

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
≥||f(x)− f(y)| − |f(y)− f(z)||
=m2〈x, f(y), z〉

∀x, y, z ∈ X. Hence

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
≤||f(x)− f(u)| − |f(u)− f(z)||

+ ||f(u)− f(z)| − |f(z)− f(x)||
+ ||f(z)− f(x)| − |f(x)− f(u)||

=m2〈x, f(u), z〉+m2〈u, f(z), x〉+m2〈z, f(x), u〉
≤m2〈x, u, z〉+m2〈u, z, x〉+m2〈z, x, u〉

∀ x, y, z ∈ X. Hence M7 holds. This shows that (X,m2) is a semi-
metron.

Example 2.7. Let X = [a, b] or a finite set of reals with c(X) ≥
3, where c(X) denotes the cardinality and m1〈x, y, z〉 = ||x − y| −
|y − z||, ∀x, y, z ∈ X. Then (X,m1) is a sur-semi-metron. For, the
properties M1, M2, M5, M6 and M7 hold obviously. The property
M3 also holds, because whenever x 6= z,∃ y 6= x+z

2
and y ∈ x, then

||x − y| − |y − z|| = m1〈x, y, z〉 > 0. Further we see that M4 does
not hold, because, when a = infX and b = supX, then m〈u, a, v〉 =
m1〈u, b, v〉, ∀ u, v ∈ X with a 6= b.

Example 2.8. Let X =]0,∞[∪{−1} and f : X → R given by f(x) =
|x|, ∀x ∈ X. Define m2〈x, y, z〉 = ||f(x)−y|−|y−f(z)||, ∀x, y, z ∈ X.
Then following situations arise about the metron properties.

(i) Properties M1 and M2 clearly hold.
(ii) The property M3 does not holds because x = −1 6= 1 = z, Then

f(x) = 1 and f(z) = 1, so, m2〈−1, y, 1〉 = ||1 − y| − |y − 1|| =
0, ∀y ∈ X.
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(iii) Property M4(A) holds. For, when y 6= y′ (assume y < y′ without
the loss of generality) choose f(u) ∈]y, y′[∩X and f(v) > y′.
Then

m2〈u, y, v〉 =||f(u)− y| − |y − f(v)||
=|f(u)− f(v)|
>||f(u)− y′| − |y′ − f(v)||
=m2〈u, y′, v〉.

Hence, whenever y 6= y′,∃ u, v ∈ X such that m2〈u, y, v〉 6=
m2〈u, y′, v〉.

(iv) Property M5 holds clearly.
(v) Property M6 holds. As,

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
≤||f(x)− y| − |y − f(u)||+ ||y − f(u)| − |y − f(z)||
=||f(x)− y| − |y − f(u)||+ ||f(u)− y| − |y − f(z)||
=m2〈x, y, u〉+m2〈u, y, z〉,∀ x, y, z, u ∈ X.

(vi) For the property M7, note that,

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
=||x− y| − |y − z||, where x = f(x) = |x| etc

=

{
||x− y| − |y − z||, if y > 0.

|x− z| ≥ ||x− y| − |y − z|| if y = −1.

Because, −1 = y < x, −1 = y < z, and −1 = y < y = 1. Hence,
m2〈x, y, z〉 ≥ m2〈x, f(y), z〉, ∀ x, y, z ∈ X. Thus,

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
≤||f(x)− f(u)| − |f(u)− f(z)||

+ ||f(u)− f(z)| − |f(z)− f(x)||
+ ||f(z)− f(x)| − |f(x)− f(u)||

=m2〈x, f(u), z〉+m2〈u, f(z), x〉+m2〈z, f(x), u〉
≤m2〈x, u, z〉+m2〈u, z, x〉+m2〈z, x, u〉

∀ x, y, z ∈ X. Hence M7 holds. This shows that (X,m2) is a
Idesemi-metron.
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Example 2.9. Let R be the set of all reals and f : R → R such that
f is injective. Define m3 : R× R× R→ R by

m3〈x, y, z〉 = ||x− f(y)| − |f(y)− z|| ∀ x, y, z ∈ R.

Then (R,m3) is necessarily a pre-metron. The justification is as fol-
lows.

(i) Properties M1 and M2 clearly hold, by definition.
(ii) If x 6= z, then |x− f(y)| 6= |z − f(y)|, when f(y) 6= x+z

2
,

So, ||x− f(y)| − |f(y)− z|| > 0, If f(y) 6= x+z
2

.
Hence whenever x 6= z, ∃ y ∈ R such that m3〈x, y, z〉 > 0, Thus
property M3 holds.

(iii) If x 6= y, so f(x) 6= f(y), and therefore there is always a choice
available as u ∈]f(x), f(y)[ and v /∈ ]f(x), f(y)[ with v < f(x).
Then for these choice of x, y, u, v, we get

m3〈u, x, v〉 =||u− f(x)| − |f(x)− v||
<|u− v|
=||u− f(y)| − |f(y)− v||
=m3〈u, y, v〉.

Thus property M4(A) holds.
(iv) The property M5, clearly holds by definition.
(v) Consider,

m3〈x, y, z〉 =||x− f(y)| − |f(y)− z||
≤||x− f(y)| − |f(y)− u||+ ||f(y)− u| − |f(y)− z||
=||x− f(y)| − |f(y)− u||+ ||u− f(y)| − |f(y)− z||
=m3〈x, y, u〉+m3〈u, y, z〉 ∀ x, y, z, u ∈ R.

So M6 holds.
(vi) The property M7 not necessarily holds.

For example, consider,

f(x) =


1
x
, for |x| ≥ 1

0, for x = 0

x+ 1, for 0 < x < 1

x− 1, for −1 < x < 0

Then, f is a injective map. But
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m3〈1/4, 8, 2〉
= ||1/4− f(8)| − |f(8)− 2||
= ||1/4− 1/8| − |1/8− 2||
= |1/8− 15/8| = 14/8 = 7/4.

> m3〈1/4, 1/4, 2〉+m3〈1/4, 2, 1/4〉+m3〈2, 1/4, 1/4〉
= ||1/4− f(1/4)| − |f(1/4)− 2||+ 0 + ||2− f(1/4)| − |f(1/4)− 1/4||
= ||1/4− 5/4| − |5/4− 2||+ 0 + ||2− 5/4| − |5/4− 1/4||
= 2|1− 3/4| = 2. 1/4 = 1/2.

This means that m3 does not satisfy the M7 property. Thus we observe
that the property M7 does not hold in general for all the injective maps.
Hence we conclude that (R,m3) is a pre-metron necessarily.

Example 2.10. Let R be the set of reals and f : R → R such that f
is injective and sup f and inf f exists. Define m2 : R× R× R→ R by

m2〈x, y, z〉 = ||f(x)− y| − |y − f(z)||, ∀x, y, z ∈ R.
Then (R,m2) is a semi-pre-metron. The observations are as follows.

(A) The properties M1, M2, M5 and M6 hold by m2 on R as given
in Example 2.9

(B) The properties M3, M4 and M7 don’t hold by m2.

(i) The function f is non-injective, so ∃ two points x 6= z such that
f(x) = f(z). Then |f(x) − y| = |f(z) − y|, ∀ y ∈ R, gives
m2〈x, y, z〉 = ||f(x) − y| − |y − f(z)|| = 0, ∀y ∈ R. Thus M3
does not hold.

(ii) The property M4 does not hold. Let sup f=b and then choose
b¡x¡y , then

m2〈u, x, v〉 = ||f(u)− x| − |x− f(v)||
= |f(u)− f(v)|
= ||f(u)− y| − |y − f(x)||
= m2〈u, y, x〉∀u, v ∈ X.

Thus, M4 does not hold.
(iii) For the property M7. Consider,

f(x) =


0, if x = 0

−2a, if x = a

2a, for x = −a
x if x /∈ {0,±a}

∀a > 0, y0 > 2a.
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Then,

L.H.S. = m2〈a, y0,−a〉 =||f(a)− y0| − |y0 − f(a)||
=|| − 2a− y0| − |y0 − 2a||
=|(2a+ y0)− (y0 − 2a)| = 4a > 0.

R.H.S =m2〈a, 0,−a〉+m2〈0,−a, a〉+m2〈−a, a, 0〉
=||f(a)− 0| − |0− f(−a)||

+ ||f(0)− (−a)| − |(−a)− f(a)||
+ ||f(−a)− a| − |a− f(o)||

=|| − 2a| − | − 2a||+ ||a| − | − a+ 2a||+ ||2a− a| − |a− 0||
=0 + 0 + 0 = 0.

So, m2〈a, y0,−a〉 ≥ m2〈a, 0,−a〉 + m2〈0,−a, a〉 + m2〈−a, a, 0〉.
Hence M7 does not hold.

Example 2.11. Let R be the set of reals and f : R → R such that f
is injective. Define m2 : R× R× R→ R by

m2〈x, y, z〉 = ||f(x)− y| − |y − f(z)||, ∀x, y, z ∈ R.

Then (R,m2) is necessarily a sur-semi-pre-metron. Observations are
as follows.

(i) The properties M1, M2 and M5 clearly hold.
(ii) If x 6= z then f(x) 6= f(z), because f is a 1− 1 function. Choose

y 6= 1/2(f(x)+f(z)), then ||f(x)−y| 6= f(z)−y||, gives ||f(x)−
y| − |y − f(z)|| = m2〈x, y, z〉 > 0. Hence M3 holds.

(iii) We observe that the property M4 may not hold in general. For,
under an assumption, if R(f) ⊂]a, b[ and if b < x < y be chosen
then,

m2〈u, x, v〉 =||f(u)− x| − |x− f(v)||
=|f(u)− f(v)|, for f(u) < x and f(v) < x.

=||f(u)− y| − |y − f(v)||, for f(u) < y and f(v) < y.

=m2〈u, y, v〉, ∀ u, v ∈ R.

Gives M4 does not hold.
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(iv) We have

m2〈x, y, z〉 =||f(x)− y| − |y − f(z)||
≤||f(x)− y| − |y − f(u)||+ ||y − f(u)| − |y − f(z)||
=||f(x)− y| − |y − f(u)||+ ||f(u)− y| − |y − f(z)||
=m2〈x, y, u〉+m2〈u, y, z〉, ∀ x, y, z, u ∈ X.

Thus the property M6 holds.
(v) By considering the following example, we conclude that the prop-

erty M7 does not hold in general. For, consider,

f(x) =


1/x, if |x| > 1

0, if x = 0

−(x+ 1), if 0 < x ≤ 1

−(x− 1), if −1 ≤ x < 0

Then,

m2〈1, 5,−1〉 =|| − 2− 5| − |5− 2|| = |7− 3| = 4

>m2〈1, 0,−1〉+m2〈0,−1, 1〉+m2〈−1, 1, 0〉
=|| − 2− 0| − |0− 2||

+ ||0 + 1| − | − 1 + 2||
+ ||2− 1| − |1− 0||

=0 + 0 + 0 = 0.

Hence (R,m2) is necessarily a sur-semi-pre-metron.

Example 2.12. Let X =]0,∞[∪{−1} and f : X → R, given by

f(x) =


−2, if x = 1

2, if x = −1

x, if x 6= ±1

Define m2〈x, y, z〉 = ||f(x) − y| − |y − f(z)||, ∀x, y, z ∈ R. Then
(X,m2) is an idesemi-pre-metron. For,

(i) The properties M1, M2, M5 and M6 clearly hold.
(ii) m2 does not satisfy the property M3. As 2 6= −1, but

m2〈2, y,−1〉 = ||2− y| − |y − 2|| = 0, ∀y ∈ X.
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(iii) m2 satisfies the property M4. For, take x 6= y (assume x < y)
and choose f(u) ∈]x, y[∩X and f(v) > y. Then,

m2〈u, x, v〉 =||f(u)− x| − |x− f(v)||,
=|f(u)− f(v)|as, x < f(u) and x < f(v)

>||f(u)− y| − |y − f(v)||, f(u) < y < f(v)

=m2〈u, y, v〉.
Hence, if x 6= y then ∃ u, v ∈ X such that m2〈u, x, v〉 6=
m2〈u, y, v〉.

(iv) m2 does not satisfy the property M7. For,

m2〈1, 5,−1〉 =|| − 2− 5| − |5− 2|| = |7− 3| = 4

>m2〈1, 1/n,−1〉+m2〈1/n,−1, 1〉+m2〈−1, 1, 1/n〉
=|| − 2− 1/n| − |1/n− 2||

+ ||1/n+ 1| − | − 1 + 2||
+ ||2− 1| − |1− 1/n||

=2/n+ 1/n+ 1/n = 4/n < 4, ∀ n > 1.

Remark 2.13. Metron like structures m1,m2,m3 defined in previous
examples can be generalizes as:

m̃〈x, y, z〉 = ||f(x)− g(y)| − |g(y)− f(z)||.
Where f, g : X → R.

(i) If g = f, then m̃ = m1 (Examples 2.2,2.3,2.4,2.5, and 2.7).
(ii) If g = 1R, then m̃ = m2 (Examples 2.6,2.8,2.10,2.11, and 2.12).

(iii) If f = 1R and g is redenoted by f, then m̃ = m3 (Example 2.9).

Definition 2.14. If a metronlike structure is not assumed to satisfy
the symmetry property (M5), then it is called a quasi-metronlike struc-
ture.

Quasi-metronlike structures that are assumed to possess (at least)
some properties of a metron are presented in the following table.

Example 2.15. Let R be the set of all the reals. Define m4 : R×R×
R→ R by

m4〈x, y, z〉 =

{
min{1, (|x− y| − |y − z|)}, if (|x− y| − |y − z|) ≥ 0.

1, otherwise.

Then (R,m4) is a quasimetron. For,

(i) m4〈x, y, z〉 ≥ 0 by definition. Hence M1 holds.
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Table 3. Quasi-metronlike structures with their properties

Structure/ Properties M1 M2 M3 M4 M5 M6 M7
Quasi-metron X X X X X X
Quasi-semi-metron X X X X
Quasi-sur-semi-metron X X X X X
Quasi-ide-semi-metron X X X X X
Quasi-pre-metron X X X X X
Quasi-semi-pre-metron X X X
Quasi-sur-semi-pre-metron X X X X
Quasi-ide-semi-pre-metron X X X X

(ii) If x = z, then |x− y| = |y − z|, ∀ y ∈ R,
or (|x− y| − |y − z|) = 0,∀ y ∈ R,
or m4〈x, y, z〉 = 0,∀ y ∈ R. Hence m4〈x, y, z〉 = 0, ∀ y ∈ R when
x = z. Thus the property M2 holds.

(iii) If x 6= z, then choose a y 6= 1/2(x + z), so |x− y| 6= |y − z| and
therefore |x− y| − |y−x| > 0 or < 0. Hence m4〈x, y, z〉 > 0 or 1
(by definition). Thus in either of the cases whenever x 6= z∃ y ∈
R such that m4〈x, y, z〉 > 0. It shows that M3 holds.

(iv) If x 6= y, assume x < y (without the loss of generality) and
choose u and v such that u < x < v < y and |u − v| < 1.
Then |u − x| − |x − v| < |u − v| = (|u − y| − |y − v|) < 1.
But |u − x| − |x − v| is either negative or nonnegative less than
|u − v|. So, m4〈u, x, v〉 is either 1 or nonnegative and less than
|u− v| < 1. Thus in either of the cases, m4〈u, x, v〉 6= |u− v| =
|u−y|−|y−v| = m4〈u, y, v〉 < 1. Hence, when x 6= y, ∃ u, v ∈ R
such that m4〈u, x, v〉 6= m4〈u, y, v〉. It shows that m4 satisfies the
M4(A) property.

(v) The M5 property does not hold. For, suppose x, y, z ∈ R such
that, |x− y| < |y − z|, then m4〈x, y, z〉 = 1 and |x− y| < |y − z|
gives |z − y| > |y− x| so m4〈z, y, x〉 > 0. This will not be always
equal to 1. Thus ∃ triple x, y, z ∈ R such that m4〈x, y, z〉 6=
m4〈z, y, x〉.

(vi) The property M6 holds. Let x, y, z, u ∈ X, then

m4〈x, y, z〉 =

{
min{1, (|x− y| − |y − z|)}, if (|x− y| ≥ |y − z|).

1, otherwise.

By definition, here two situations arise. Consider the following
situations.
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Situation (I)

0 ≤m4〈x, y, z〉 ≤ |x− y| − |y − z|
=|x− y| − |y − u|+ |y − u| − |y − z|
=(|x− y| − |y − u|) + (|u− y| − |y − z|)

Then either both the values (|x−y|−|y−u|) and (|u−y|−|y−z|)
are positive or any one of these values is negative. Since,
m4〈x, y, z〉 bounded by 1 and for the expression of negative value,
the metron value is +1, hence in either cases m4〈x, y, z〉 does
not exceed m4〈x, y, u〉+m4〈u, y, z〉.

Situation (II) The value m4〈x, y, z〉 = 1 when |x−y|−|y−z| <
0. Now, |x− y| − |y − z| = (|x− y|–|y − u|+ (|u− y| − |y − z|,
gives that either both the expressions are negative or any one of
these is negative. Therefore in either of the cases, at least one
of the values m4〈x, y, u〉 or m4〈u, y, z〉 is +1. Hence m4〈x, y, z〉
does not exceed m4〈x, y, u〉 + m4〈u, y, z〉. Therefore in both the
situations, m4〈x, y, z〉 ≤ m4〈x, y, u〉+m4〈u, y, z〉 ∀ x, y, z, u ∈ R.

(vii) The property M7 holds. Consider the identity,

0 = (|x− u| − |u− z|) + (|u− z| − |z − x|) + (|z − x| − |x− u|)

Then by the observation, it is clear that either all the expressions
of this identity have zero value or at least one of these expressions
have negative value.

Take the situation(I), when all the expressions have zero value.
Then it implies that |x− y| = |u− z| = |z− x| But we know that
|x−u| = |u−z| = |z−x| ⇔ x = u = z, whenever x, z, u are reals.
So, x = z, gives m4〈x, y, z〉 = |x− y| − |y − z| = 0, ∀y ∈ R and
therefore the inequality m4〈x, y, z〉 ≤ m4〈x, y, z〉 + m4〈u, z, x〉 +
m4〈z, x, u〉 is satisfied. In situation(II), when at least one of
the expressions is negative, then at least one of the values from
m4〈x, u, z〉,m4〈u, z, x〉 and m4〈z, x, u〉 is 1. But by definition,
m4〈x, y, z〉 is bounded by 1. Hence the inequality m4〈x, y, z〉 ≤
m4〈x, u, z〉+m4〈u, z, x〉+m4〈z, x, u〉 ∀ x, y, z, u ∈ R is satisfied.
Thus M7 holds.

Example 2.16. Let X be a nonempty set with at least four elements
and f : X → R such that f is injective map. Define m5 : X×X×X →
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R given by

m5〈x, y, z〉

=

{
min{1, (|f(x)− f(y)| − |f(y)− f(z)|)}, if |f(x)− f(y)| ≥ |f(y)− f(z)|
1, otherwise.

Then (X,m5) is necessarily a quasi-sur-semi-metron. Because metron
value of any triple is determined by reals and the f is injective ,so
f(x),f(y),f(z) is an independent triple as is x,y,z. Hence all the situa-
tions arises same except (iv) as in the Example 2.15

Example 2.17. Let X be a nonempty set with at least four elements
and f : X → R such that f is non-injective but not constant. Define
m5 : X ×X ×X → R as in Example 2.16. Then (X,m5) is a quasi-
semi-metron.

Example 2.18. Let (X, d) be a metric space and m6 : X×X×X → R
given by

m6〈x, y, z〉 =

{
min{1, (d(x, y)− d(y, z))}, if d(x, y) ≥ d(y, z).

1, otherwise.

Then (X,m6) is a quasi-sur-semi-pre-metron.

Example 2.19. Let (X, d) be a semimetric space and m6 : X ×X ×
X → R given by

m6〈x, y, z〉 =

{
min{1, (d(x, y)− d(y, z))}, if d(x, y) ≥ d(y, z).

1, otherwise.

Then (X,m6) is a quasi-semi-pre-metron.

Example 2.20. Let (X, d) be a quasisemimetric space and m : X ×
X × X → R defined by m〈x, y, z〉 = |d(x, y) − d(y, z)|. Then (X,m)
is a quasi-sur-semi-pre-metron.

Observations about Examples 2.17 to 2.20 can be seen on the lines
of Example 2.15.

Remark 2.21. The examples of quasiide-semi-metron, quasisemi-
metron, quasipre-metron, quasi-sur-semi-pre-metron, quasiidesemi-
pre-metron, quasi-semi-pre-metron can be made by varying the cor-
responding metronlike functions for symmetry.

Theorem 2.22. Let (X,m) be a quasimetron. If we define mc :
X × X × X → R by mc〈x, y, z〉 = m〈z, y, x〉, then (X,mc) is also
a quasimetron.
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Proof. Let (X,m) be a quasimetron and mc is a metronlike function
given by mc〈x, y, z〉 = m〈z, y, x〉 ∀ x, y, z ∈ X. Then observations are
as follows.

(i) mc〈x, y, z〉 = m〈z, y, x〉 ≥ 0, ∀ x, y, z ∈ X.
(ii) If x = z so, z = x and then m〈z, y, x〉 = 0, ∀ y ∈ X Thus,

mc〈x, y, z〉 = 0, ∀ y ∈ X.
(iii) If x 6= z so z 6= x then ∃ a y ∈ X such that m〈z, y, x〉 > 0 or

mc〈x, y, z〉 > 0.
(iv) If x 6= y then ∃ u, v ∈ X such that m〈v, x, u〉 6= m〈v, y, u〉 or

mc〈u, x, v〉 6= mc〈u, y, v〉.
(v) When m〈x, y, z〉 6= m〈z, y, x〉 then obviously, mc〈z, y, x〉 6=

mc〈x, y, z〉 (by definition). This gives that M5 property is not
possible.

(vi) The property M6 follows on note that

mc〈x, y, z〉 =m〈z, y, x〉
≤m〈z, y, u〉+m〈u, y, x〉
=mc〈u, y, z〉+mc〈x, y, u〉
=mc〈x, y, u〉+mc〈u, y, z〉 ∀ x, y, z, u ∈ X

(vii) The property M7 follows on note that

mc〈x, y, z〉 =m〈z, y, x〉
≤m〈z, u, x〉+m〈u, x, z〉+m〈x, z, u〉
=mc〈x, u, z〉+mc〈z, x, u〉+mc〈u, z, x〉
=mc〈x, u, z〉+mc〈u, z, x〉+mc〈z, x, u〉 ∀ x, y, z, u ∈ R.

Thus mc satisfies all the properties M1 to M7 except M5. Hence
(X,mc) is a quasimetron.

�

Definition 2.23. Let (X,m) be a quasimetronlike structure and define
mc : X ×X ×X → R by mc〈x, y, z〉 = m〈z, y, x〉, ∀ x, y, z ∈ X, then
(X,mc) is called conjugate of (X,m).

In the previous definitions and examples we have presented weak
variations of metron structure, in which the property itself is to be
excluded or included in the structure itself. Some times the properties
M2, M3 and M4 are not the properties of structure itself but these
properties seem in the family of structures. These weak structures are
defined and presented in the following definitions and examples.
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Definition 2.24. (Weak vanishing property etc.) Let X be a
nonempty set and {mα : α ∈ Λ} is a family of trivariate functions on
X. Then we say that the family {mα : α ∈ Λ} satisfies-

(i) Weak vanishing property on X if, for each x ∈ X, ∃ αx ∈ Λ such
that mαx〈x, y, x〉 = 0, ∀ y ∈ X.

(ii) Weak survival property on X if, for each pair of distinct points
x 6= z ∈ X, ∃ an α(x,z) ∈ Λ and a point y ∈ X such that
mα(x,z)〈x, y, z〉 > 0.

(iii) Weak identification property on X if, mα〈u, x, v〉 = mα〈u, y, v〉,
∀ u, v ∈ X and ∀ α ∈ Λ⇒ x = y.

Definition 2.25. (Weak V-metron etc): Let X, be a nonempty
set and {mα : α ∈ Λ} is a family of trivariate functions on X. Then
we say that:

(A) (X,mα) is a Weak Vanishing Metron (Weak V-metron) with re-
spect to the family {mα : α ∈ Λ} or {X,mα : α ∈ Λ} is a family
of weak V - metrons, if

(i) (X,mα) satisfy all the metron properties except possibly van-
ishing property M2 for each α ∈ Λ.

(ii) The family {mα} satisfies weak vanishing property on X.
(B) (X,mα) is a weak survival metron (weak S-metron) with respect

to the family {mα} or {(X,mα) : α ∈ Λ} is a family of weak
S-metrons, if

(i) (X,mα) is an ide-semi-metron, ∀ α ∈ Λ.
(ii) The family {mα} satisfies weak survival property on X.

(C) (X,mα) is a weak identification metron (weak I-metron) with re-
spect to the family {mα} or {(X,mα) : α ∈ Λ} is a family of weak
I-metrons, if

(i) (X,mα) is a sur-semi-metron, ∀ α ∈ Λ.
(ii) The family {mα} satisfies weak identification property on X.

Example 2.26. (Family of weak vanishing metrons) Let E =
[0, n], n ∈ N and ep : E × E × E → R for all p ∈ E, defined by,

ep〈x, y, z〉 =


0, if x = z 6= p

1, if x = z = p

1 + (y/n) if x 6= z.

Then (E, ep) is a weak vanishing metron w.r.t the family F ⊂ {ep :
p ∈ E} or {(E, ep) : ep ∈ F} is a family of weak vanishing metrons if
{ep, eq}p 6=q ⊂ F. For,

(i) ep〈x, y, z〉 ≥ 0, ∀ x, y, z ∈ E.
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(ii) if x ∈ E and x 6= p then ep〈x, y, x〉 = 0 and eq〈p, y, p〉 = 0, q ∈ E
with p 6= q.

(iii) if x 6= z, then ep〈x, y, z〉 = 1 + y/n > 0, ∀y ∈ X.
(iv) When x 6= y, then 1 + x/n 6= 1 + y/n, so, ep〈u, x, v〉 6=

ep〈u, y, v〉, ∀ u 6= v.
(v) ep〈x, y, z〉 = ep〈z, y, x〉, ∀ x, y, z ∈ X.

(vi) The triangle inequality

ep〈x, y, z〉 ≤ ep〈x, y, u〉+ ep〈u, y, z〉

is vacuously true when x = z 6= p and it is also true when x =
z = p,as ep〈p, y, p〉 = 1 where as ep〈p, y, u〉 = 1 or 1 + y/n etc.
Further, when x 6= z, the inequality is true, for u surely differs
with at least one point from x and z, so, ep〈x, y, z〉 = 1 + y/n
and one of ep〈x, y, u〉 and ep〈u, y, z〉 is 1 + y/n.

(vii) The triangular chain inequality

ep〈x, y, z〉 ≤ ep〈x, u, z〉+ ep〈u, z, x〉+ ep〈z, x, u〉

is vacuously true then x = z 6= p and x = z = p. And for
x 6= z, u surely differs with at least one point from x and z and
therefore, ep〈x, y, z〉 = 1 + y/n, ep〈x, y, z〉 ≥ 1 and at least one
of ep〈u, z, x〉 and ep〈z, x, u〉 is greater than or equal to 1. Thus,
ep〈x, y, z〉 + ep〈u, z, x〉 + ep〈z, x, u〉 ≥ 2, whereas ep〈x, y, z〉 ≤ 2.
so inequality holds.

Hence in all cases, the triangular chain inequality is true.

Example 2.27. (Family of weak survival metrons) Let X =
]0,∞[∪{−1} and f : X → R, given by

fµ(x) =

{
x, if x 6= −1

µ, if x = −1, where µ ∈]0, 1].

Define mµ〈x, y, z〉 = ||fµ(x)–y|–|y–fµ(z)||, ∀x, y, z ∈ X. Then (X,mµ)
is an ide-semi-metron for all µ ∈]0, 1].

In perticular, (X,mµ) does not satisfy the survival property for the
pair −1, µ, as mµ〈−1, y, µ〉 = ||µ − y| − |y − µ|| = 0, ∀ y ∈ X. But
mv〈−1, y, µ〉 = ||v–y|–|y − µ|| > 0, when v 6= µ.

Therefore the family {(X,mµ) : µ ∈]0, 1]} satisfies the weak survival
property. Hence the family {(X,mµ) : µ ∈]0, 1]} is a family of weak
S-metrons. In particular {(X,mµ), (X,mv)}v 6=µ is a family of weak
S- metrons.
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Example 2.28. (Family of weak identification metrons) Let
Jn = {1, 2, . . . . . . . . . , n} and fi : Jn → Jn for i = 1, 2, given by

f1(x) =

{
x, if x 6= 1, n

1, if x = 1, n

f2(x) =

{
x, if x 6= 1, n

n, if x = 1, n

and mi〈x, y, z〉 = ||fi(x)− fi(y)| − |fi(y)− fi(z)||, i = 1, 2.

Then (Jn,m1) and (Jn,m2) are sur-semi-metrons and do not fol-
low the identification property for pair, {1, (n − 1)} in (Jn,m1) and
{2, n} in (Jn,m2). Because m1〈x, 1, y〉 = m1〈x, n − 1, y〉, ∀ x, y ∈ Jn
and m2〈x, 2, y〉 = m2〈x, n, y〉, ∀ x, y ∈ Jn. But it obeys the weak
identification property, i.e. mi〈u, x, v〉 = mi〈u, y, v〉, ∀ u, v ∈ Jn and
i = 1, 2 ⇒ x = y. It shows that {(Jn,mi) : i = 1, 2} is a family of
weak identification metrons.

3. HIERARCHY BETWEEN METRON AND
METRONLIKE STRUCTURES

In the weak variations of metron,we found many metronlike
structures called pre-metron, quasimetron, sur-semi-metron and
ide-semi-metron by excluding the properties M7, M5, M4 and M3
respectively. Further, weak variations of structures have been found
by excluding more than one properties from the metron. All these
weak structures can be arranged in a lattice diagram given in Figure
3.1.

In this diagram five levels are given. These levels represent low
pitched demarcations.When no property is excluded from the defini-
tion of a metron, we call the structure to be a zero level structure,
which is the metron itself. Out of the properties M7, M5, M4
and M3 of a metron, if any one of them is deleted, we call the
corresponding structure to be a first level structure. Similarly if any
two of the properties mentioned above are deleted, the corresponding
structures are called second level structures. Further, if any three
of the above properties are deleted from the definition of a metron
the structure obtained are called third leveled. Finally if all the
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four properties mentioned above are deleted. we call the structure
to be of fourth leveled. In the diagram the implications indicate the
weak structures. The weakest of all is the quasi-semi-pre-metron.
We note that those structures which are not connected by a flow of
implications are noncomparable.

Figure 3.1. Lattice Diagram of Metronlike Structures

4. METRIC SPACES AND METRONLIKE STRUCTURES

In this section we investigate the possibilities of constructing
metronlike structures from metric spaces and vice versa.

Theorem 4.1. Each metric space is a sur-semi-metron.

Proof. Let (X, d) be a metric space. Define m : X ×X ×X → R, by
m〈x, y, z〉 = d(x, z), ∀ x, y, z ∈ X. Then:
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(i) The properties, M1, M2, M3, M5 and M6 clearly hold.
(ii) The property M4 is not satisfied, because, m〈u, x, v〉 =

m〈u, y, v〉, ∀ x, y, u, v ∈ X.
(iii) the property M7 holds, as,

m〈x, y, z〉 =d(x, z)

≤2d(x, z)

≤d(x, z) + d(x, u) + d(u, z)

=d(x, z) + d(u, x) + d(z, u)

=m〈x, u, z〉+m〈u, z, x〉+m〈z, x, u〉, ∀ x, y, z, u ∈ X.

Hence (X,m) is a sur-semi-metron. �

The function m〈x, y, z〉 defined in the Theorem 4.1 is an invariant
function with respect to y. Hence it assures that m〈x, y, z〉 will not
satisfy the identification property.

Hence it is a sur-semi-metron function. In the case of invariant
metronlike functions, the triangular chain inequality is the byproduct
of the triangle inequality.

Definition 4.2. Let X be a nonempty set and let m〈x, y, z〉 be a
metronlike function. Then it is said to be an invariant metronlike
function, if m is invariant with respect to y.

The function m〈x, y, z〉 = d(x, z), where (X, d) is a metric space,
is an invariant sur-semi-metron function. A set associated with an
invariant sur-semi-metron function is called an Invariable sur-semi-
metron.

Theorem 4.3. A metric space and an invariable sur-semi-metron are
equivalent structures.

Proof. By the Theorem 4.1, and Definition 4.2, it is clear that each
metric space can be treated as an invariable sur-semi-metron.

Conversely, let(X,m) be an invariable sur-semi-metron. Define
d(x, z) = m〈x, y, z〉 ∀ x, y, z ∈ X. Since m is an invariable function
with respect to y, so clearly d(x, z) is a well defined function. Further
d has following properties on X.

(i) d(x, z) ≥ 0, ∀ x, z ∈ X because m〈x, y, z〉 ≥ 0, ∀x, y, z ∈ X.
(ii) d(x, z) = 0, if x = z because m〈x, y, z〉 = 0 whenever x = z.

(iii) Suppose, d(x, z) = 0, so, m〈x, y, z〉 = 0, ∀ y ∈ X, then x = z;
by the M3(A) property.

(iv) d(x, z) = m〈x, y, z〉 = m〈z, y, x〉 = d(z, x), ∀x, z ∈ X.
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(v) Clearly, we have

d(x, z) =m〈x, y, z〉
≤m〈x, y, u〉+m〈u, y, z〉
=d(x, u) + d(u, z) ∀ x, u, z ∈ X.

Hence (X, d) is a metric space.
Therefore we have that, metric space and invariable sur-semi-metron

are equivalent structures. �

Remark 4.4. The Theorem 4.3 shows that metric space and invariable
sur-semi-metron are equivalent. Similarly it can be seen that, semi-
metric space, quasimetric space and quasisemimetric spaces are equiv-
alent corresponding to invariable semi-metron, invariable quasisur-
semi-metron and quasisemi-metron. Hence we get the following im-
plications sketch of Figure 4.1.

Figure 4.1. Equivalence of Metronlike structures with
Metriclike structures

Theorem 4.5. Let (X, d) be a metric space, and let m be a function
given by m〈x, y, z〉 = |d(x, y) − d(y, z)|, ∀x, y, z ∈ X, then (X,m) is
necessarily a sur-semi-pre-metron.
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Proof. Let (X, d) be a metric space and let m〈x, y, z〉 = |d(x, y) −
d(y, z)|,∀x, y, z ∈ X. Then the property observations are as follows.

(i) m〈x, y, z〉 ≥ 0, ∀ x, y, z ∈ X.
(ii) If x = z then, m〈x, y, z〉 = |d(x, y)−d(y, z)| = |d(x, y)−d(y, x)| =

0, ∀y ∈ X.
(iii) Take m〈x, y, z〉 = 0, ∀ y ∈ X, then |d(x, y)− d(y, z)| = 0, ∀ y ∈

X; or d(x, y) = d(y, z), ∀y ∈ X implies that x = z. Otherwise
suppose that x 6= z, then for y = z, d(x, z) = d(z, z) = 0, gives
x = z, a contradiction to our assumption x 6= z.

(iv) The following example shows that the identification property is
not satisfied.
For, take Jk = {1, 2, ......, k} as a metric space with usual metric
d(x, y) = |x − y|. Let m1〈x, y, z〉 = ||x − y| − |y − z|| then in
(Jk,m1), m1〈x, 1, z〉 = m1〈x, k, z〉, ∀ x, z ∈ Jk whereas 1 6= k.

(v) The symmetric property is obvious.
(vi) The triangle inequality holds. For,

m〈x, y, z〉 =|d(x, y)− d(y, z)|
=|d(x, y)− d(y, u) + d(y, u)− d(y, z)|
≤|d(x, y)− d(y, u)|+ d(u, y)− d(y, z)|
=m〈x, y, u〉+m〈u, y, z〉, ∀ x, y, z ∈ X.

(vii) The triangular chain inequality does not hold. This is shown by
the following example. Take (R2, d) as a metric space with d, the
usual metric on R2.
Define m2〈x, y, z〉 = |d(x, y)− d(y, z)|, ∀ x, y, z ∈ R2.
Choose, x = (0, 0), y = (3, 0), z = (2, 0) and u = (1,

√
3),

then d(x, y) = 3, d(x, z) = 2, d(y, z) = 1, d(x, u) = 2 and
d(z, u) = 2.
So,

m2〈x, y, z〉 =|d(x, y)− d(y, z)| = |3− 1| = 2

>m2〈x, u, z〉+m2〈u, z, x〉+m2〈z, x, u〉
=|d(x, u)− d(u, z)|+ |d(u, z)− d(z, x)|+ |d(z, x)− d(x, u)|
=|2− 2| − |2− 2|+ |2− 2| = 0.

Thus, M1, M2, M3, M5 and M6 properties hold necessarily.
Hence (X,m) is necessarily a sur-semi-pre-metron.

�
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Remark 4.6. Theorem 4.5 infers that the metriclike structures- met-
ric space, semimetric space, quasimetric space, quasisemimetric space
can respectively be converted into the metronlike structures- sur-semi-
pre-metron, semi-pre-metron, quasi-sur-semi-pre-metron and quasi-
semi-pre-metron.

Remark 4.7. The triangular chain inequality holds in (R, d) but it
does not hold in (Rk, d), k ≥ 2 with mk〈x, y, z〉 = |d(x, y) − d(y, z)|,
where d is the usual distance function on related sets. Thus, we are
able to show the basic difference, between (R, d) and (Rk, d), when
k ≥ 2, with their usual metric.

Definition 4.8. Let (X, m) be a metronlike structure, then

(a) it satisfies the Existence of base supremum property (EBS-
Property) if sup{m〈x, u, y〉 : u ∈ X} exists for each choice of
x, y ∈ X or equivalently {m〈x, u, y〉 : u ∈ X} is bounded for each
choice of x, y ∈ X.

(b) it satisfies the Mark binding property (MB-Property) if
sup{m〈u, x, v〉 : u, v ∈ X} exists for each choice of x ∈ X
or equivalently {m〈u, x, v〉 : u, v ∈ X} is bounded for each choice
of x ∈ X.

(c) it satisfies the Existence of base difference supremum property
(EBDS-Property) if sup{|m〈x, u, y〉 − m〈x, v, y〉| : u, v ∈ X} ex-
ists for each choice of x, y ∈ X or equivalently {|m〈x, u, y〉 −
m〈x, v, y〉| : u, v ∈ X} is bounded for each choice of x, y ∈ X.

(d) satisfies the Existence of mark supremum property (EMS-Property)
if sup{|m〈u, x, v〉 − m〈u, y, v〉| : u, v ∈ X} exists for each choice
of x, y ∈ X or equivalently, {|m〈u, x, v〉 −m〈u, y, v〉| : u, v ∈ X}
is bounded for each choice of x, y ∈ X.

Remark 4.9. A sur-semi-pre-metron (X,m) obtained from a metric
space (X, d) according to Theorem 4.5 then (X,m) possesses the EBS-
Property. As d(x, y) ≤ d(x, z) + d(z, y) or |d(x, y)− d(y, z)| ≤ d(x, z),
∀ x, y, z ∈ X or sup{m〈x, y, z〉 : y ∈ X} always exists for x, z ∈ X.
Similarly all the conversions of Remark 4.6 have EBS- Property.

Theorem 4.10. Let (X,m) be a sur-semi-pre-metron with the EBS-
Property and d(x, z) = sup{m〈x, y, z〉 : y ∈ X} for all x, z ∈ X, then
(X, d) is a metric space.

Proof. Let (X,m) be a sur-semi-pre-metron with the EBS- Property
and let d(x, z) = sup{m〈x, y, z〉 : y ∈ X}, ∀ x, y, z ∈ X. Then d(x, z)
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always exists and so d is a well defined function on X×X. We observe
that d satisfies the following properties.

(i) d(x, z) ≥ 0, ∀ x, z ∈ X, which is implied by M1 property of
(X,m).

(ii) If x = z, then d(x, z) = 0, which is implied by M2 property.
(iii) If d(x, z) = 0 then x = z, is implied by M3(A) property.
(iv) d(x, z) = d(z, x), ∀ x, z ∈ X, is implied by M5 property.
(v) d(x, z) ≤ d(x, u) + d(u, z),∀ x, u, z ∈ X, is implied by M6 prop-

erty.

Thus d defined as above is a metric function on X. Hence (X, d) is a
metric space. �

Remark 4.11. In the statement of Theorem 4.10 if we replace sur-
semi-pre-metron by some other metronlike structure viz semi-pre-
metron, quasi-sur-semi-pre-metron and quasi-semi-pre-metron, then
correspondingly we get the metriclike structures semimetric space,
quasimetric space and quasisemimetric space.

Remark 4.12. We note from Remarks 4.6, 4.9 and 4.11, that the
metronlike structures with EBS-property and metriclike structures are
mutually convertible; as below:
Metric space ←→ Sursemi-pre-metron with EBS-property.
Semimetric space ←→ Semipre-metron with EBS-property.
Quasimetric space ←→ Quasisur-semi-pre-metron with EBS-property.
Quasisemimetric space←→ Quasisemi-pre-metron with EBS-property.

Theorem 4.13. Let (X,m) be a metronlike structure with the tri-
angular chain inequality, then (X,m) obeys the EBS-property and so
there always exists a metriclike function on X.

Proof. Let (X,m) be a metronlike structure with M7 property. Now,
m〈x, y, z〉 ≤ m〈x, u, z〉 + m〈u, z, x〉 + m〈z, x, u〉 ∀ x, y, z, u ∈ X. By
varying y on X and by fixing u, it is clear that {m〈x, y, z〉 : y ∈ X} is
a bounded set and therefore it obeys the EBS- Property.

Thus, by the result of Theorem 4.10 there always exists a metriclike
function on X. �

Remark 4.14. From the above findings about metriclike structures
and metronlike structures of Remark 4.12 it is very clear that the
identification property has no role in these metric spaces or metri-
clike spaces. Hence the identification property is totally independent
from metric properties in these conversions.
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Theorem 4.15. Let (X,m) be an idesemi-pre-metron with EMS-
property and di(x, y) = sup{|m〈u, x, v〉−m〈u, y, v〉| : u, v ∈ X} Then
(X, di) is a metric space.

Proof. Let (X,m) be an idesemi-pre-metron with EMS-property and
di : X ×X → R is defined by,

di(x, y) = sup{|m〈u, x, v〉 −m〈u, y, v〉| : u, v ∈ X}, ∀ x, y ∈ X.
Since (X,m) possesses the EMS-property so, di(x, y) always exists and
it is a well defined function. The observations about metric properties
are following,

(i) di(x, y) ≥ 0, ∀x, y ∈ X, by definition.
(ii) we have,

di(x, y) = 0⇒sup{|m〈u, x, v〉 −m〈u, y, v〉| : u, v ∈ X} = 0

⇒m〈u, x, v〉 = m〈u, y, v〉, ∀ u, v ∈ X
⇒x = y, by the M4 property.

(iii) if x = y, then

m〈u, x, v〉 = m〈u, y, v〉 ∀ u, v ∈ X
⇒|m〈u, x, v〉 −m〈u, y, v〉| = 0, ∀ u, v ∈ X.
⇒sup{|m〈u, x, v〉 −m〈u, y, v〉| : u, v ∈ X} = 0.

⇒di(x, y) = 0.

(iv) di(x, y) = di(y, x), ∀ x, y ∈ X by definition.
(v) Consider,

|m〈u, x, v〉 −m〈u, y, v〉| =|m〈u, x, v〉 −m〈u, z, v〉
+m〈u, z, v〉 −m〈u, y, v〉|
≤|m〈u, x, v〉 −m〈u, z, v〉|

+ |m〈u, z, v〉 −m〈u, y, v〉|
By taking supremum on right hand side and then on left hand
side, ∀ x, y, z ∈ X we get,

supu,v∈X{|m〈u, x, v〉 −m〈u, y, v〉|} ≤supu,v∈X{|m〈u, x, v〉 −m〈u, z, v〉|}
+supu,v∈X{|m〈u, z, v〉 −m〈u, y, v〉|}

Which implies that di(x, y) ≤ di(x, z) + di(z, y).
Hence (X, di) is a metric space.

�
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Remark 4.16. In the statement of Theorem 4.15 if we replace
idesemi-pre-metron by semi-pre-metron then correspondingly we get
a semimetric space.

Remark 4.17. In the Theorem 4.15, if (X,m) is a metronlike struc-
ture with M4 and EMS-property. Then (X, di) is a metric space.

Theorem 4.18. Let (X,m) be a semi-pre-metron which possesses
the I-survival property, the triangle inequality of difference and
EBDS-property. Suppose dis is a function given by, dis(x, y) =
sup{|m〈x, u, y〉 − m〈x, v, y〉| : u, v ∈ X}. Then (X, dis) is a met-
ric space.

Proof. Let (X,m) be a semi-pre-metron with I-survival property, the
triangle inequality of difference and EBDS-property. Define dis(x, y) =
sup{|m〈x, u, y〉 − m〈x, v, y〉| : u, v ∈ X}, then it always exists and
therefore dis(x, y) is a well defined function. The observations about
metric properties are on the lines of Theorem 4.9 [29], shows that
(X, dis) is a metric space �

Remark 4.19. In the statement of Theorem 4.18,

(i) if we replace semi-pre-metron by quasi-semi-pre-metron then cor-
respondingly we get quasimetric space.

(ii) if we exclude the I-survival property, then correspondingly we get
semimetric space.

(iii) If we replace semi-pre-metron by quasi-semi-pre-metron and ex-
clude the I-survival property, then correspondingly we get qua-
sisemimetric space.

Remark 4.20. In the Theorem 4.18, (X,m) be a semi-pre-metron,
can be replaced by (X,m) be a metronlike structure (with M2 property).

Theorem 4.21. Let (X,m) be a metronlike structure with M7 prop-
erty then the EBS-property holds and therefore the EBDS-property also
holds.

Proof. Let (X,m) be a metronlike structure with M7 property. So,
m〈x, u, y〉 ≤ 〈x, x, y〉+m〈x, y, x〉+m〈y, x, x〉 = 2m〈x, x, y〉, ∀ x, y ∈ X.
Hence sup{|m〈x, u, y〉−m〈x, v, y〉| : u, v ∈ X} ≤ 2m〈x, x, y〉, ∀ x, y ∈
X. This shows that EBS-property holds and hence EBDS-property
also holds in (X,m). �

Remark 4.22. As in the Theorem 4.18 if (X,m) is a given metron-
like structure with M7 property and dis(x, y) = sup{|m〈x, u, y〉 −
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m〈x, v, y〉| : u, v ∈ X}, then conversions into metriclike spaces are
as follows.

(i) (X, dis) is a metric space if (X,m) is a semi-metron with I-
survival and the triangle inequality of difference property.

(ii) (X, dis) is a quasimetric space if (X,m) is a quasi-semi-metron
with I-survival and the triangle inequality of difference property.

(iii) (X, dis) is a semimetric space if (X,m) is a semi-metron with
the triangle inequality of difference property.

(iv) (X, dis) is a quasisemimetric space if (X,m) is a quasi-semi-
metron with the triangle inequality of difference property.

Definition 4.23. Let (X,m) be a metronlike structure, then we say
that it possesses the Existence of Nonsurvival Property (EN-property)
if for each choice of x, y ∈ X, ∃ a point u ∈ X (depending on x and y)
such that m〈x, u, y〉 = 0. This property holds in (R,m1), as, x, y ∈ R
then for u = 1/2(x+ y), m1〈x, u, y〉 = 0.

Theorem 4.24. Let (X,m) be a metronlike structure with EBDS-
property and the existence of nonsurvival property. Suppose, ds(x, y) =
sup{m〈x, u, y〉 : u ∈ X} and dis(x, y) = sup{|m〈x, u, y〉 −m〈x, v, y〉| :
u, v ∈ X}, then (X,m) possesses the EBS-property and ds(x, y) =
dis(x, y), ∀ x, y ∈ X.

Proof. Let (X,m) be a metronlike structure with EBDS-property and
the existence of nonsurvival property. Since m〈x, u, y〉 ≥ 0, so clearly
|m〈x, u, y〉 −m〈x, v, y〉| ≤ max{m〈x, u, y〉,m〈x, v, y〉}. So, by taking
supremum, we get,

sup{|m〈x, u, y〉 −m〈x, v, y〉| : u, v ∈ X}
≤sup{max{m〈x, u, y〉,m〈x, v, y〉} : u, v ∈ X}
=sup{m〈x, u, y〉 : u ∈ X}, if m attains max at u.

=sup{m〈x, u, y〉 : u ∈ X} for supremum taking on entire X.

Thus,we obtain that

sup{|m〈x, u, y〉 −m〈x, v, y〉| : u, v ∈ X} ≤ sup{m〈x, u, y〉 : u ∈ X}...(A)

Conversely, ∀ v0 ∈ X, we have, sup{|m〈x, u, y〉−m〈x, v, y〉| : u, v ∈ X}
≥ sup{|m〈x, u, y〉 −m〈x, v0, y〉| : u, v0 ∈ X}. But by the existence of
nonsurvival property, ∃ a point v0 ∈ X such that m〈x, v0, y〉 = 0. It
follows that,

sup{|m〈x, u, y〉 −m〈x, v, y〉| : u, v ∈ X} ≥ sup{m〈x, u, y〉 : u ∈ X}...(B).
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Thus, by (A) and (B) we get,

sup{|m〈x, u, y〉 −m〈x, v, y〉| : u, v ∈ X} = sup{m〈x, u, y〉 : u ∈ X}...(C)

Hence the EBDS-property with the existence of nonsurvival property
implies the EBS-property. Further by, the definitions of ds(x, y) and
dis(x, y) putting in (C) we get ds(x, y) = dis(x, y), ∀ x, y ∈ X. �

Note: In the Theorem 4.24, if (X,m) be a metronlike structure with
EBS-property and EN-property; then (X,m) possesses the EBDS-
property and dis(x, y) = ds(x, y), ∀ x, y ∈ X.

5. CONSTRUCTION OF METRON FROM WEAK
VARIATIONS OF METRON

Every society has some social problems. These problems are cre-
ated by a unit, or units or group of units of the society. The problem
creators don’t obey the principles setforth for the society. Then there
exists a basic job for the thinkers as how to mould the units, so that
they also start to follow the norms of the society. Similarly in mathe-
matics also, we have model structures and structures which are weak
in the model sense. In particular, if a metron is taken as a model
structure then the structures like sur-semi-metron, ide-semi-metron
and semi-metron are weak in the above model sense. In this section
we make efforts to convert these weak structures into the near model
structures or into model structure.

Theorem 5.1. Let (X,m) be an ide-semi-metron. Then there is al-
ways possible to construct a metron on some quotient set of X.

Proof. Let (X,m) be an ide-semi-metron, then it is a metronlike struc-
ture with all the metron properties excluding M3 property. To impose
M3 on some quotient set of X, define a relation S on the set X, by

xSy ⇔ m〈x, a, y〉 = 0, ∀ a ∈ X.

Then clearly S is an equivalence relation on X. Let E = X/S = {Ex :
x ∈ X}, where, Ex = {y ∈ X : m〈x, a, y〉 = 0, ∀ a ∈ X}. Suppose,
α : E → X such that α(Ex) ∈ Ex and then define m̄α : E×E×E → R
given by m̄α〈Ex, Ey, Ez〉 = m〈x, α(Ey), z〉. This function m̄α is well
defined, because,

(i) α(Ex) ∈ Ex, ∀ x ∈ X, so α(Ex) 6= α(Ey), if Ex 6= Ey. Hence α
is a injective map.
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(ii)

m〈x′, α(Ey), z
′〉 ≤m〈x′, α(Ey), x〉+m〈x, α(Ey), z〉+m〈z, α(Ey), z

′〉
=0 +m〈x, α(Ey), z〉+ 0

=m〈x, α(Ey), z〉.

Similarly, by interchanging the role of x and x′ etc. m〈x, α(Ey), z〉 ≤
m〈x′, α(Ey), z

′〉. Hence, m〈x, α(Ey), z〉 = m〈x′, α(Ey), z
′〉 ∀ x′ ∈ Ex

and z′ ∈ Ez. Further, the function m̄α obeys the following properties.

M1 m̄α〈Ex, Ey, Ez〉 ≥ 0, ∀ Ex, Ey, Ez ∈ E. (by definition)
M2 Suppose Ex = Ez, then x′ ∈ Ex = Ez, so, m̄α〈Ex, Ey, Ez〉 =

m〈x, α(Ey), x
′〉 = 0, ∀ Ey ∈ E.

M3 Suppose, Ex ∈ Ez, then x /∈ Ez; and so m̄α〈Ex, Ex, Ez〉 > 0.
Otherwise, let

m̄α〈Ex, Ex, Ez〉 = 0.

⇒m〈x, α(Ez), z
′〉 = 0, ∀ z′ ∈ Ez.

⇒m〈x, α(Ez), α(Ez)〉 = 0.

So ∀ y ∈ X, we have,

m〈x, y, z〉 =m〈x, y, α(Ez)〉
≤m〈x, α(Ez), α(Ez)〉

+m〈α(Ez), α(Ez), x〉
+m〈α(Ez), x, α(Ez)〉

=0 + 0 + 0 = 0

Thus, m〈x, y, z〉 = 0, ∀ y ∈ X or equivalently zSx, so x ∈ Ez, a
contradiction.

M4 It follows on noting that

m̄α〈Eu, Ex, Ev〉 = m̄α〈Eu, Ey, Ev〉, ∀ Eu, Ev ∈ E.
⇒m〈u′, α(Ex), v

′〉 = m〈u′, α(Ey), v
′〉, ∀ u′ ∈ Eu, v′ ∈ Ev.

⇒α(Ex) = α(Ey)

⇒Ex = Ey, for f is a injectivefunction.

M5 It clear , because ∀ Ex, Ey, Ez ∈ E, we have,

m̄α〈Ex, Ey, Ez〉 =m〈x, α(Ey), z〉
=m〈z, α(Ey), x〉
=m̄α〈Ez, Ey, Ex〉.
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M6 It follows because ∀ Ex, Ey, Ez, Eu ∈ E, we have,

m̄α〈Ex, Ey, Ez〉 =m〈x, α(Ey), z〉
≤m〈x, α(Ey), u〉+m〈u, α(Ey), z〉
=m̄α〈Ex, Ey, Ez〉+ m̄α〈Eu, Ey, Ez〉.

M7 Clearly ,∀ Ex, Ey, Ez, Eu ∈ E,we have,

m̄α〈Ex, Ey, Ez〉 =m〈x, α(Ey), z〉
=m〈α(Ex), α(Ey), α(Ez)〉
≤m〈α(Ex), α(Eu), α(Ez)〉

+m〈α(Eu), α(Ez), α(Ex)〉
+m〈α(Ez), α(Ex), α(Eu)〉

=m̄α〈Ex, Eu, Ez〉
+ m̄α〈Eu, Ez, Ex〉
+ m̄α〈Ez, Ex, Eu〉

Thus m̄α obeys all the metron properties M1 to M7 on E. This shows
that (E, m̄α) is a metron, called a quotient metron on ide-semi-metron
(X,m). �

Remark 5.2. Since α : E → X, such that α(Ex) ∈ Ex and for
each α, m̄α is a metron function on E. Hence under the machinery of
Theorem 5.1 it generates a family of quotient metrons, {(E, m̄α) : α ∈
Λ} where Λ is the family of all such α functions on E .

Theorem 5.3. Let (X,m) be a sur-semi-metron. Then there is always
possible to construct a family of sur-semi-metrons on the quotient set
of X, which possesses the weak identification property. Thus we get a
family of weak identification metrons.

Proof. Let (X,m) be a sur-semi-metron, then it is a metronlike struc-
ture with all the metron properties except the identification property.
To impose identification, we define a relation I on X, by

xIy ⇔ m〈u, x, v〉 = m〈u, y, v〉, ∀u, v ∈ X.
Then clearly reflexivity, symmetry and transitivity hold for I, so I
is an equivalence relation on X. Suppose, E is the set of all the
equivalence classes generated by I on X i.e. E = {Ex : x ∈ X} where
Ex = {y ∈ X : xIy} and x ∈ X.

The set E is the quotient set on X with respect to I. Now, define
m̄α : E ×E ×E → R, by m̄α〈Ex, Ey, Ez〉 = m〈α(Ex), y, α(Ez), where
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α : E → X such that α(Ex) ∈ Ex. The function m̄α is a well-defined
function, because,

(i) α is a 1− 1 map for α(Ex) ∈ Ex.
(ii) By the definition of relation I on X, we have,

m̄α〈Ex, Ey, Ez〉 =m〈α(Ex), y, α(Ez)〉,
=m〈α(Ex), y

′, α(Ez)〉 ∀ y′ ∈ Ey.

The properties of m̄α on E are observed as below. �

M1 Clearly m̄α is a nonnegative function.
M2 We note that m̄α has vanishing property, because α(Ex) is

unique for each Ex, and m is a function with vanishing prop-
erty.

M3 If Ex 6= Ez, then α(Ex) 6= α(Ez), so ∃ a y ∈ X such that
m〈α(Ex), y, α(Ez)〉 > 0, which gives that ∃ Ey ∈ E such that
m̄α〈Ex, Ey, Ez〉 > 0.

M4 Suppose

m̄α〈Eu, Ex, Ev〉 = m̄α〈Eu, Ey, Ev〉 ∀ Eu, Ev ∈ E.
⇒m〈α(Eu), x

′, α(Ev)〉 = m〈α(Eu), y
′, α(Ev)〉, ∀ x′ ∈ Ex, y′ ∈ Ey.

;x′Iy′.

So, we conclude that Ex and Ey are not necessarily equal.
M4’ If we suppose, m̄α〈Eu, Ex, Ev〉 = m̄α〈Eu, Ey, Ev〉 ∀ Eu, Ev ∈ E,

and for all α ∈ Λ where Λ is the family of all such α functions
defined on E to X.
Then m〈α(Eu), x

′, α(Ev)〉 = m〈α(Eu), y
′, α(Ev)〉, ∀ α ∈

Λ, ∀ Eu, Ev ∈ E& x′ ∈ Ex, y′ ∈ Ey.
Thus,

m〈u, x′, v〉 =m〈u, y′, v〉, ∀ u, v ∈ X.
⇒x′Iy′

⇒Ex = Ey.

It follows that the family {m̄α : α ∈ Λ} satisfies the weak
identification property.

M5 It follows on noting that,

m̄α〈Ex, Ey, Ez〉 =m〈α(Ex), y
′, α(Ez)〉, ∀ y′ ∈ Ey.

=m〈α(Ez), y
′, α(Ex)〉, ∀ y′ ∈ Ey.

=m̄α〈Ez, Ey, Ex〉 ∀ Ex, Ey, Ez ∈ E.
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M6 It follows on noting that,

m̄α〈Ex, Ey, Ez〉 =m〈α(Ex), y
′, α(Ez)〉, ∀ y′ ∈ Ey.

≤m〈α(Ex), y
′, α(Eu)〉+m〈α(Eu), y

′, α(Ez)〉,
=m̄α〈Ex, Ey, Ez〉+ m̄α〈Eu, Ey, Ez〉 ∀ Ex, Ey, Ez, Eu ∈ E.

M7 Clearly, ∀ Ex, Ey, Ez, Eu ∈ E, we have

m̄α〈Ex, Ey, Ez〉 =m〈α(Ex), y
′, α(Ez)〉, ∀ y′ ∈ Ey.

≤m〈α(Ex), α(Eu), α(Ez)〉
+m〈α(Eu), α(Ez), α(Ex)〉
+m〈α(Ez), α(Ex), α(Eu)〉

=m̄α〈Ex, Eu, Ez〉
+ m̄α〈Eu, Ez, Ex〉
+ m̄α〈Ez, Ex, Eu〉.

It shows that (E, m̄α) is not necessarily a metron, but (E,m̄α) is a
weak I-metron with respect to the family {(E, m̄α) : α ∈ Λ}. Hence
{(E, m̄α) : α ∈ Λ} is a family of weak I-metrons.

Remark 5.4. The constructed structure (E, m̄α) in the above Theorem
5.3 may not be a metron. We note that the structure approaches to
a metron or to a weak I-metron family only. The following examples
illustrate the situations.

Example 5.5. Let Jk = {1, 2, . . . , k} and m : Jk×Jk×Jk → R defined
by m〈x, y, z〉 = ||x−y|−|y−z||. Then (Jk,m) is a sur-semi-metron and
does not satisfy the identification property for the pair {1, k}. Define
a relation I on Jk by

xIy ⇔ m〈u, x, v〉 = m〈u, y, v〉, ∀ u, v ∈ Jk.
Then I is an equivalence relation on Jk. Suppose E is the set of all
equivalence classes on Jk with respect to I, i.e. E = {Ex : x ∈ Jk},
where Ex indicates the equivalence class of x. Then Ex = {x}, ∀ x 6=
1, k and x ∈ Jk; and E1 = Ek = {1, k}. So, E = {{1, k}, {2}, . . . , {k−
1}}.

Now, define αi : E → Jk with αi(Ex) ∈ Ex. Observe that all the
equivalence classes except {1, k} contain singleton element. So there
exist exactly two αi functions. Those two functions say α1 and α2 are
as follows:

α1(Ex) =

{
x, if Ex 6= {1, k}
1, if Ex = {1, k} (= E1)
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α2(Ex) =

{
x, if Ex 6= {1, k}
k, if Ex = {1, k} (= Ek)

Again define, m̄αi : E×E×E → R, for i = 1, 2 by m̄αi〈Ex, Ey, Ez〉 =
m〈αi(Ex), αi(Ey), αi(Ez)〉 By the Theorem 5.3, it is clear that (E, m̄αi)
and (E, m̄α2) both are sur-semi-metrons.
Further, put {1, k} = E ∗ (= E1 = Ek); then

m̄α1〈Eu, E∗, Ev〉 =m̄α1〈Eu, E1, Ev〉
=m〈α1(Eu), α1(E1), α1(Ev)〉
=||u− 1| − |1− v||
=|u− 1| − (v − 1)|, for 1 ≤ u, 1 ≤ v

=|u− v|
=|v − u|
=|((k − 1)− u)− ((k − 1)− v)|, for k − 1 ≥ u, v.

=||u− (k − 1)| − |(k − 1)− v||
=m〈α1(u), α1(Ek−1), α1(Ev)〉
=mα1〈Eu, Ek−1, Ev〉, ∀ Eu, Ev ∈ E.

And, E ∗ {1, k} = Ek, so

m̄α2〈Eu, E2, Ev〉 =m〈α2(Eu), α2(E2), α2(Ev)〉
=||u− 2| − |2− v||
=|u− 2| − (v − 2)|, for 2 ≤ u, 2 ≤ v

=|u− v| = |v − u|
=|(k − u)− (k − v)|
=||u− k| − |k − v||
=m〈α2(Eu), α2(Ek), α2(Ev)〉
=m̄α2〈Eu, Ek, Ev〉, ∀ Eu, Ev ∈ E.

Thus, (E, m̄α1) and (E, m̄α2) are structures without identification
property. Hence (E, m̄α1) and (E, m̄α2) both are not metrons.

Example 5.6. Let X = [a, b] and m : X ×X ×X → R, defined by

m〈x, y, z〉 = ||x− y| − |y − z||.

Then (X,m) is a sur-semi-metron and does not satisfy the identifica-
tion property for the pair {a, b}.
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Define a relation I on X by

xIy ⇔ m〈u, x, v〉 = m〈u, y, v〉, ∀ u, v ∈ X.
Then I is an equivalence relation on X and the equivalence classes on
X are, Ex = {x} if x 6= a, b and Ea = Eb = {a, b} = E∗. So, E =
{Ex : x ∈]a, b]} or E = {Ex : x ∈ [a, b[}. Now, define, αi : E → X
with αi(Ex) ∈ Ex.

Observe that all the equivalence classes except {a, b} contain sin-
gleton element. So there exist exactly two such functions. Those two
functions are as follows:

αa(Ex) =

{
x, if Ex 6= E∗
a, if Ex = E ∗ (= Ea)

αb(Ex) =

{
x, if Ex 6= E∗
b, if Ex = E ∗ (= Eb)

Define, m̄αi : E × E × E → R, by, m̄αi〈Ex, Ey, Ez〉 =
m〈αi(Ex), αi(Ey), αi(Ez)〉 then (E, m̄αi) is a metron, for both the val-
ues i = a, b. Because whenever we choose, x, y ∈ [a, b[ (x, y ∈]a, b]
with x 6= y i.e. Ex 6= Ey, then ∃, u, v ∈ [a, b[ (u, v ∈]a, b]) with
m̄αi〈Eu, Ex, Ev〉 6= m̄αi〈Eu, Ey, Ev〉 for i = a (i = b) respectively.

Theorem 5.7. Let (X,m) be a semi-metron. Then it is always pos-
sible to construct a weak I-metron on some quotient set of X.

Proof. Let (X,m) be a semi-metron, then it is a metronlike structure
with all metron properties except M3 and M4. We impose M3 and
M4 properties including the other properties on the quotient set of X
to make out the quotient set as a metron. This quotient set is a second
generation quotient set on X found by the process given below.

From the set X, we form a quotient set by the use of ‘S ′ the survival
property relation. Again we make out a quotient set from the quotient
set formed earlier by using ‘I ′ the identification property relation.

At first we impose a binary relation S on X related with survival
property. Define the relation S on X by,

xSy ⇔ m〈x, a, y〉 = 0, ∀ a ∈ X.
Then S is an equivalence relation on X. Suppose E = X/S = {ex :
x ∈ X}, where ex = {y ∈ X : xSy}.

Define m̄α : E × E × E → R, by, m̄α〈ex, ey, ez〉 = m〈x, α(ey), z〉
where, α : E → X such that α(ex) ∈ ex. Then we have seen in the
Theorem 5.1 that (E, m̄α) is a sur-semi-metron for each α ∈ Λ where
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Λ is the set of all such α functions. At the second stage, we impose a
binary relation I on E related with the identification property. For,
define the relation I on E by,

exIey ⇔ m̄α〈eu, ex, ev〉 = m̄α〈eu, ey, ev〉 ∀ eu, ev ∈ E.

Then I is again an equivalence relation on E. Suppose Ē is the set
of all the equivalence classes generated by I on E. So, Ē = {Ēex :
ex ∈ E}, where Ēex = {ey ∈ E : exIey}. The set Ē is the quotient
set on E with respect to I. Now define, m̄αβ : Ē × Ē × Ē → R, by
m̄αβ〈Ēex , Ēey , Ēez〉 = m̄α〈β(Ēex), ey, β(Ēez)〉 where, β : Ē → E such
that β(Ēex) ∈ Ēex . Then {(E, m̄αβ) : α ∈ Λ and β ∈ Γ} is a family of
weak I-metrons, as we have seen in the Theorem 5.3. Here Γ is the
family of all such β function. �

Remark 5.8. In the above theorem if we impose the relation related
with identification properly at first stage and the survival related rela-
tion at second stage, then we arrive at the same metronlike structure
called weak I-metron.

6. Conclusion

In this paper, we have generalized the structure of metron by weak-
ening the restrictions of properties. This study gives a possible sketch
of the theory of metronlike structures. Further studies could address
in the setting of metron and metronlike structures generalizations of
the notions of boundedness, of convergence and of other topological
concepts : separation axioms, connectedness, compactness, continuity,
homeomorphisms. The study of metronlike structures can shed a new
light on the theory of metric spaces, even in the case of Euclidean
spaces.
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