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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 34 (2024), No. 2, 5 - 28

THE CLASS OF FUZZY GENERALIZED CLOSED
SETS OF TYPE sθ AND ITS APPLICATIONS

ANJANA BHATTACHARYYA

Abstract. In this paper a new type of generalized version of
fuzzy closed set, viz., fsθg-closed set is introduced and studied. Using
this concept as a basic tool, here we introduce and study fsθg-open
and fsθg-closed functions, the class of which are strictly larger than
that of fuzzy open and fuzzy closed functions respectively. Afterwards,
we introduce and study fsθg-continuous and fsθg-irresolute functions.
Next we introduce fsθg-regular, fsθg-normal, fsθg-compact and fsθg-
T2-spaces and the applications of fsθg-open and fsθg-closed functions
on these spaces are discussed.

1. Introduction

fg-closed set is introduced in [3, 4]. Afterwards, different types of
generalized version of fuzzy closed sets are introduced and studied. In
this context we have to mention [6, 7, 8, 11, 12, 13, 14, 16, 17, 18]. In
[2] fuzzy semiopen set is introduced. Using this concept as a basic tool,
here we introduce fsθg-closed set, the class of which is an independent
concept of fg-closed set. After introducing fuzzy m-structure in [1],
fuzzy minimal space (m-space, for short) is introduced in [5]. However
generalized version of different types of closed sets in fuzzy m-space
are introduced and studied in [9, 10, 15].
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2. Preliminaries

Throughout this paper (X, τ) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [20]. In [32],
L.A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function
from a non-empty set X into the closed interval I = [0, 1], i.e., A ∈ IX .
The support [32] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x ∈ X : A(x) ̸= 0}. The fuzzy set with the singleton
support {x} ⊆ X and the value t (0 < t ≤ 1) will be denoted by xt. 0X
and 1X are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement of a fuzzy set A in X is denoted by 1X \A and
is defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X [32]. For any
two fuzzy sets A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X
[32] while AqB means A is quasi-coincident (q-coincident, for short)
with B, if there exists x ∈ X such that A(x) + B(x) > 1 [30]. The
negation of these two statements will be denoted by A ̸≤ B and A ̸ qB
respectively. For a fuzzy point xt and a fuzzy set A, xt ∈ A means
A(x) ≥ t, i.e., xt ≤ A. For a fuzzy set A, clA and intA will stand
for fuzzy closure [20] and fuzzy interior [20] of A respectively. A fuzzy
set A is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy
point xα if there exists a fuzzy open set U in X such that xα ∈ U ≤ A
[30]. If, in addition, A is fuzzy open, then A is called fuzzy open nbd
of xα [30]. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy
q-nbd, for short) [30] of a fuzzy point xα in an fts X if there is a fuzzy
open set U in X such that xαqU ≤ A. If, in addition, A is fuzzy open,
then A is called fuzzy open q-nbd [30] of xα. A fuzzy set A in X is
called fuzzy semiopen [2] if A ≤ cl(intA). The complement of a fuzzy
semiopen set is called fuzzy semiclosed [2]. The intersection (resp.,
union) of all fuzzy semiclosed (resp., fuzzy semiopen) sets containing
(resp., contained in) a fuzzy set A is called fuzzy semiclosure [2] (resp.,
fuzzy semiinterior [2]) of A, to be denoted by sclA (resp., sintA). The
collection of all fuzzy semiopen (resp. fuzzy semiclosed) sets in an fts
(X, τ) is denoted by FSO(X, τ) (resp., FSC(X, τ)).

3. fsθg-Closed Set

In this section fsθg-closed set is introduced and studied. Some im-
portant properties of this newly defined set are discussed here .

Definition 3.1. Let (X, τ) be an fts and A ∈ IX . Then A is called
fsθg-closed set in X if cl(sintA) ≤ U whenever A ≤ U ∈ FSO(X).
The complement of this set is called fsθg-open set in X.

The collection of all fsθg-closed (resp., fsθg-open) sets in an fts X is
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denoted by FsθGC(X) (resp., FsθGO(X)).
Remark 3.2. Union and intersection of two fsθg-closed sets may

not be so, as it seen from the following example.
Example 3.3. Let X = {a, b}, τ = {0X , 1X , A} where A(a) =

0.5, A(b) = 0.4. Then (X, τ) is an fts. Here FSO(X) = {0X , 1X , U}
where A ≤ U ≤ 1X \A. Now consider the fuzzy sets B and C defined
by B(a) = 0.5, B(b) = 0, C(a) = 0, C(b) = 0.5. Clearly B and C are
fsθg-closed sets in (X, τ). Let D = B

∨
C. Then D(a) = D(b) = 0.5.

Now D ≤ D ∈ FSO(X). But cl(sintD) = 1X \ A ̸≤ D ⇒ D is not
fsθg-closed set in X.
Again consider two fuzzy sets S and T defined by S(a) = 0.6, S(b) =
0.5, T (a) = 0.5, T (b) = 0.7. Then clearly S, T ∈ FsθGC(X). Let
U = S

∧
T . Then U(a) = U(b) = 0.5. Now U ≤ U ∈ FSO(X). But

cl(sintU) = 1X \ A ̸≤ U ⇒ U ̸∈ FsθGC(X).
Note 3.4. So we can conclude that the set of all fsθg-open sets in

an fts (X, τ) does not form a fuzzy topology.
Theorem 3.5. Let (X, τ) be an fts and A,B ∈ IX . If A ≤ B ≤

cl(sintA) and A is fsθg-closed set in X, then B is also fsθg-closed set
in X.
Proof. Let U ∈ FSO(X) be such that B ≤ U . Then by hypothe-

sis, A ≤ B ≤ U . As A is fsθg-closed set in X, cl(sintA) ≤ U . Then
cl(sintA) ≤ cl(sintB) ≤ cl(sint(cl(sintA))) ≤ cl(sintA) ≤ U ⇒ B is
fsθg-closed set in X.
Theorem 3.6. Let (X, τ) be an fts and A,B ∈ IX . If int(sclA) ≤

B ≤ A and A is fsθg-open set in X, then B is also fsθg-open set in
X.

Proof. int(sclA) ≤ B ≤ A ⇒ 1X \ A ≤ 1X \B ≤ 1X \ int(sclA) =
cl(sint(1X \ A)) where 1X \ A is fsθg-closed set in X. By Theorem
3.5, 1X \B is fsθg-closed set in X ⇒ B is fsθg-open set in X.
Theorem 3.7. Let (X, τ) be an fts and A ∈ IX . Then A is fsθg-

open set in X if and only if K ≤ int(sclA) whenever K ≤ A and K is
fuzzy semiclosed set in (X, τ).

Proof. Let A(∈ IX) be fsθg-open set in X and K ≤ A where K is
fuzzy semiclosed set in (X, τ). Then 1X \A ≤ 1X \K where 1X \A is
fsθg-closed set in X and 1X \K is fuzzy semiopen set in (X, τ). By
hypothesis, cl(sint(1X \ A)) ≤ 1X \K ⇒ 1X \ int(sclA) ≤ 1X \K ⇒
K ≤ int(sclA).

Conversely, let K ≤ int(sclA) whenever K ≤ A, K ∈ FSC(X).
Then 1X \ A ≤ 1X \ K where 1X \ K ∈ FSO(X). By hypothesis,
1X \ int(sclA) ≤ 1X \ K ⇒ cl(sint(1X \ A)) ≤ 1X \ K ⇒ 1X \ A is
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fsθg-closed set in X ⇒ A is fsθg-open set in X.
Theorem 3.8. Let (X, τ) be an fts and A,B ∈ IX . If A is fsθg-

closed set in X and B is fuzzy semiclosed set in (X, τ) with A /qB.
Then cl(sintA) /qB.

Proof. By hypothesis, A /qB ⇒ A ≤ 1X \ B ∈ FSO(X) ⇒
cl(sintA) ≤ 1X \B ⇒ cl(sintA) /qB.

Remark 3.9. The converse of Theorem 3.8 may not be true, in
general, as it seen from the following example.

Example 3.10. Let X = {a, b}, τ = {0X , 1X , A,B,C} where
A(a) = 0.4, A(b) = 0.6, B(a) = 0.3, B(b) = 0.5, C(a) = 0.8, C(b) = 1.
Then (X, τ) is an fts. Consider the fuzzy set D defined by D(a) =
0.4, D(b) = 0.5. Then D ≤ D ∈ FSO(X). But cl(sintD) = clD =
1X \B ̸≤ D ⇒ D is not fsθg-closed set in X. Again D /q(1X \C). Also
cl(sintD) = (1X \B) /q(1X \ C).

Now we recall the following definitions from [3, 4] for ready refer-
ences.

Definition 3.11 [3, 4]. Let (X, τ) be an fts and A ∈ IX . Then A
is called fg-closed set if clA ≤ U whenever A ≤ U ∈ τ .

Remark 3.12. It is clear from next examples that fg-closed set
and fsθg-closed are independent concepts.
Example 3.13. fsθg-closed sets don’t have to be fg-closed.

Let X = {a, b}, τ = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.6, B(a) = 0.4, B(b) = 0.2. Then (X, τ) is an fts. Then FSO(X) =
{0X , 1X , U, V } where A ≤ U ≤ 1X \ B,B ≤ V ≤ 1X \ A. Consider
the fuzzy set C defined by C(a) = C(b) = 0.5. Then C ≤ A ∈ τ (also
C ≤ A ∈ FSO(X)). Here clC = 1X \ B ̸≤ A ⇒ C is not fg-closed
set in X. But cl(sintC) = 1X \ A ≤ A ⇒ C is fsθg-closed set in X.
Example 3.14. fg-closed sets don’t have to be fsθg-closed.
Let X = {a, b}, τ = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.

Then (X, τ) is an fts. Now consider the fuzzy set B defined by
B(a) = B(b) = 0.5. Then clearly B is fg-closed set but not fsθg-
closed set in X.
Definition 3.15. An fts (X, τ) is called fTsθg-space if every fsθg-

closed set in X is fuzzy closed set in X.
Now we introduce a new type of generalized version of neighbour-

hood system in an fts.
Definition 3.16. Let (X, τ) be an fts and xα, a fuzzy point in X.

A fuzzy set A is called fsθg-neighbourhood (fsθg-nbd, for short) of
xα, if there exists an fsθg-open set U in X such that xα ∈ U ≤ A. If,
in addition, A is fsθg-open set in X, then A is called an fsθg-open
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nbd of xα.
Definition 3.17. Let (X, τ) be an fts and xα, a fuzzy point in

X. A fuzzy set A is called fsθg-quasi neighbourhood (fsθg-q-nbd, for
short) of xα if there is an fsθg-open set U in X such that xαqU ≤ A.
If, in addition, A is fsθg-open set in X, then A is called an fsθg-open
q-nbd of xα.

Note 3.18. (i) It is clear from definitions that every fsθg-open set
is an fsθg-open nbd of each of its points. But every fsθg-nbd of xα

may not be an fsθg-open set containing xα follows from the following
example.
(ii) Also every fuzzy open nbd (resp., fuzzy open q-nbd) of a fuzzy
point xα is an fsθg-open nbd (resp., fsθg-open q-nbd) of xα. But
the converses are not necessarily true, in general, as it seen from the
following example.

Example 3.19. Let X = {a, b}, τ = {0X , 1X , A,B} where
A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.3. Then (X, τ) is an fts.
Here FSO(X) = {0X , 1X , U} where B ≤ U ≤ 1X \ A. Consider the
fuzzy point a0.4 and the fuzzy set D defined by D(a) = 0.5, D(b) = 0.3.
Then clearly D is not an fsθg-closed set in X and so 1X \ D is
not fsθg-open set in X. Let us consider the fuzzy set C defined by
C(a) = 0.5, C(b) = 0.6. Clearly C is fsθg-closed set inX and so 1X\C
is an fsθg-open set in X with 1X \ C ≤ 1X \D. Again a0.4 ∈ 1X \ C.
So 1X \D is an fsθg-nbd of a0.4, though it is not an fsθg-open set in
X.
Also consider the fuzzy set E defined by E(a) = 0.3, E(b) = 0.7 and
the fuzzy point a0.6. Then clearly E is an fsθg-closed set in X and so
1X \ E is fsθg-open set in X containing a0.6 and so 1X \ E is fsθg-
open nbd of a0.6. But there does not exist any open set U in X with
a0.6 ∈ U ≤ 1X \ E. Hence 1X \ E is not a fuzzy nbd of a0.6. Next
consider the fuzzy point a0.4 and the fuzzy set E. Here 1X \ E is
fsθg-open q-nbd of a0.4. But there does not exist any fuzzy open set
U ≤ 1X \ E in X which is q-coincident with a0.4. So 1X \ E is not a
fuzzy open q-nbd of a0.4.

4. fsθg-Open Function and fsθg-Closed Function

In this section, we first introduce and study a new type of gener-
alized version of fuzzy closure-like operator which is seen to be an
idempotent operator. Then using this operator as a basic tool, two
types of functions are introduced and characterized.
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Definition 4.1. Let (X, τ) be an fts and A ∈ IX . Then fsθg-
closure and fsθg-interior of A, denoted by fsθgcl(A) and fsθgint(A),
are defined as follows:

fsθgcl(A) =
∧
{F : A ≤ F, F is fsθg-closed set in X},

fsθgint(A) =
∨
{G : G ≤ A,G is fsθg-open set in X}.

Remark 4.2. It is clear from definition that for any A ∈ IX ,
A ≤ fsθgcl(A) ≤ clA. If A is fsθg-closed set in an fts X, then
A = fsθgcl(A). Similarly, intA ≤ fsθgint(A) ≤ A. If A is fsθg-
open set in an fts X, then A = fsθgint(A). It follows from Remark
3.2 that fsθgcl(A) (resp., fsθgint(A)) may not be fsθg-closed (resp.,
fsθg-open) set in an fts X.
Theorem 4.3. Let (X, τ) be an fts and A ∈ IX . Then for a fuzzy

point xt in X, xt ∈ fsθgcl(A) if and only if every fsθg-open q-nbd U
of xt, UqA.

Proof. Let xt ∈ fsθgcl(A) for any fuzzy set A in an fts X and F
be any fsθg-open q-nbd of xt. Then xtqF ⇒ xt ̸∈ 1X \ F which is
fsθg-closed set in X. Then by Definition 4.1, A ̸≤ 1X \ F ⇒ there
exists y ∈ X such that A(y) > 1− F (y) ⇒ AqF .
Conversely, let for every fsθg-open q-nbd F of xt, FqA. If possible,

let xt ̸∈ fsθgcl(A). Then by Definition 4.1, there exists an fsθg-closed
set U in X with A ≤ U , xt ̸∈ U . Then xtq(1X \ U) which being fsθg-
open set in X is fsθg-open q-nbd of xt. By assumption, (1X \ U)qA
Hence (1X \ A)qA, a contradiction.
Theorem 4.4. Let (X, τ) be an fts and A,B ∈ IX . Then the fol-

lowing statements are true:
(i) fsθgcl(0X) = 0X ,
(ii) fsθgcl(1X) = 1X ,
(iii) A ≤ B ⇒ fsθgcl(A) ≤ fsθgcl(B),
(iv) fsθgcl(A

∨
B) = fsθgcl(A)

∨
fsθgcl(B),

(v) fsθgcl(A∧B) ≤ fsθgcl(A)∧ fsθgcl(B), equality does not hold, in
general, follows from Example 3.3,
(vi) fsθgcl(fsθgcl(A)) = fsθgcl(A).

Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), fsθgcl(A)

∨
fsθgcl(B) ≤ fsθgcl(A

∨
B).

To prove the converse, let xα ∈ fsθgcl(A
∨
B). Then by Theo-

rem 4.3, for any fsθg-open set U in X with xαqU , Uq(A
∨
B) ⇒

there exists y ∈ X such that U(y) +max{A(y), B(y)} > 1 ⇒ either
U(y) + A(y) > 1 or U(y) +B(y) > 1 ⇒ either UqA or UqB ⇒ either
xα ∈ fsθgcl(A) or xα ∈ fsθgcl(B) ⇒ xα ∈ fsθgcl(A)

∨
fsθgcl(B).

(v) Follows from (iii).
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(vi) As A ≤ fsθgcl(A), for any A ∈ IX , fsθgcl(A) ≤
fsθgcl(fsθgcl(A)) (by (iii)).

Conversely, let xα ∈ fsθgcl(fsθgcl(A)) = fsθgcl(B) where B =
fsθgcl(A). Let U be any fsθg-open set in X with xαqU . Then UqB
implies that there exists y ∈ X such that U(y) + B(y) > 1. Let
B(y) = t. Then ytqU and yt ∈ B = fsθgcl(A). So UqA implies that
xα ∈ fsθgcl(A). Hence fsθgcl(fsθgcl(A)) ≤ fsθgcl(A). Consequently,
fsθgcl(fsθgcl(A)) = fsθgcl(A).

Theorem 4.5. Let (X, τ) be an fts and A ∈ IX . Then the following
statements hold:
(i) fsθgcl(1X \ A) = 1X \ fsθgint(A)
(ii) fsθgint(1X \ A) = 1X \ fsθgcl(A).

Proof (i). Let xt ∈ fsθgcl(1X \A) for a fuzzy set A in an fts (X, τ).
If possible, let xt ̸∈ 1X \ fsθgint(A). Then 1 − (fsθgint(A))(x) <
t ⇒ [fsθgint(A)](x) + t > 1 ⇒ fsθgint(A)qxt ⇒ there exists
at least one fsθg-open set F ≤ A with xtqF and so xtqA. As
xt ∈ fsθgcl(1X \ A), F q(1X \ A) Then Aq(1X \ A), a contradiction.
Hence

fsθgcl(1X \ A) ≤ 1X \ fsθgint(A)...(1)
Conversely, let xt ∈ 1X \fsθgint(A). Then 1− [(fsθgint(A)](x) ≥ t.

So xt /q(fs
θgint(A)). So xt /qF for every fsθg-open set F contained in

A ... (2).
Let U be any fsθg-closed set in X such that 1X \ A ≤ U . Then
1X \ U ≤ A. Now 1X \ U is fsθg-open set in X contained in A. By
(2), xt /q(1X \ U) implies that xt ∈ U ⇒ xt ∈ fsθgcl(1X \ A) and so

1X \ fsθgint(A) ≤ fsθgcl(1X \ A)...(3).

Combining (1) and (3), (i) follows.
(ii) Putting 1X\A for A in (i), we get fsθgcl(A) = 1X\fsθgint(1X\A).
Hence fsθgint(1X \ A) = 1X \ fsθgcl(A).

Let us now recall the following definition from [31] for ready refer-
ences.

Definition 4.6 [31]. A function f : X → Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.
Definition 4.7. A function h : X → Y is called fsθg-open function

if h(U) is fsθg-open set in Y for every fuzzy open set U in X.
Remark 4.8. Since fuzzy open set is fsθg-open set, we say that

fuzzy open function is fsθg-open function. But the converse need not
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be true, as it seen from the following example.
Example 4.9. fsθg-open functions don’t have to be fuzzy open.

Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ2) is fs

θg-open set in
(X, τ2), clearly i is fsθg-open function. But A ∈ τ1, i(A) = A ̸∈ τ2 ⇒ i
is not a fuzzy open function.

Theorem 4.10. For a bijective function h : X → Y , the following
statements are equivalent:
(i) h is fsθg-open,
(ii) h(intA) ≤ fsθgint(h(A)), for all A ∈ IX ,
(iii) for each fuzzy point xα in X and each fuzzy open set U in X
containing xα, there exists an fsθg-open set V in Y containing h(xα)
such that V ≤ h(U).

Proof (i) ⇒ (ii). Let A ∈ IX . Then intA is a fuzzy open set in
X. By (i), h(intA) is fsθg-open set in Y . Since h(intA) ≤ h(A) and
fsθgint(h(A)) is the union of all fsθg-open sets contained in h(A), we
have h(intA) ≤ fsθgint(h(A)).
(ii) ⇒ (i). Let U be any fuzzy open set in X. Then h(U) = h(intU) ≤
fsθgint(h(U)) (by (ii)) ⇒ h(U) is fsθg-open set in Y ⇒ h is fsθg-
open function.
(ii) ⇒ (iii). Let xα be a fuzzy point in X, and U , a fuzzy open set in
X such that xα ∈ U . Then h(xα) ∈ h(U) = h(intU) ≤ fsθgint(h(U))
(by (ii)). Then h(U) is fsθg-open set in Y . Let V = h(U). Then
h(xα) ∈ V and V ≤ h(U).
(iii) ⇒ (i). Let U be any fuzzy open set in X and yα, any fuzzy
point in h(U), i.e., yα ∈ h(U). Then there exists unique x ∈ X
such that h(x) = y (as h is bijective). Then [h(U)](y) ≥ α ⇒
U(h−1(y)) ≥ α ⇒ U(x) ≥ α ⇒ xα ∈ U . By (iii), there ex-
ists fsθg-open set V in Y such that h(xα) ∈ V and V ≤ h(U).
Then h(xα) ∈ V = fsθgint(V ) ≤ fsθgint(h(U)). Since yα is
taken arbitrarily and h(U) is the union of all fuzzy points in h(U),
h(U) ≤ fsθgint(f(U)) ⇒ h(U) is fsθg-open set in Y ⇒ h is an fsθg-
open function.

Theorem 4.11. If h : X → Y is fsθg-open, bijective function,
then the following statements are true:
(i) for each fuzzy point xα in X and each fuzzy open q-nbd U of xα

in X, there exists an fsθg-open q-nbd V of h(xα) in Y such that
V ≤ h(U),
(ii) h−1(fsθgcl(B)) ≤ cl(h−1(B)), for all B ∈ IY .
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Proof (i). Let xα be a fuzzy point inX and U be any fuzzy open q-nbd
of xα in X. Then xαqU = intU ⇒ h(xα)qh(intU) ≤ fsθgint(h(U))
(by Theorem 4.10 (i)⇒(ii)) implies that there exists at least one fsθg-
open q-nbd V of h(xα) in Y with V ≤ h(U).
(ii) Let xα be any fuzzy point in X such that xα ̸∈ cl(h−1(B)) for any
B ∈ IY . Then there exists a fuzzy open q-nbd U of xα in X such that
U /qh−1(B). Now

h(xα)qh(U)...(1)

where h(U) is fsθg-open set in Y . Now h−1(B) ≤ 1X \ U which is a
fuzzy closed set in X ⇒ B ≤ h(1X \U) (as h is injective) ≤ 1Y \h(U).
So B /qh(U). Let V = 1Y \ h(U). Then B ≤ V which is fsθg-closed
set in Y . We claim that h(xα) ̸∈ V . If possible, let h(xα) ∈ V =
1Y \ h(U). Then 1 − [h(U)](h(x)) ≥ α ⇒ h(U) /qh(xα), contradicting
(1). So h(xα) ̸∈ V ⇒ h(xα) ̸∈ fsθgcl(B) ⇒ xα ̸∈ h−1(fsθgcl(B)) ⇒
h−1(fsθgcl(B)) ≤ cl(h−1(B)).
Theorem 4.12. An injective function h : X → Y is fsθg-open

if and only if for each B ∈ IY and F , a fuzzy closed set in X with
h−1(B) ≤ F , there exists an fsθg-closed set V in Y such that B ≤ V
and h−1(V ) ≤ F .
Proof. Let B ∈ IY and F , a fuzzy closed set in X with h−1(B) ≤ F .
Then 1X \ h−1(B) ≥ 1X \ F where 1X \ F is a fuzzy open set in
X ⇒ h(1X \ F ) ≤ h(1X \ h−1(B)) ≤ 1Y \ B (as h is injective) where
h(1X \ F ) is an fsθg-open set in Y . Let V = 1Y \ h(1X \ F ). Then
V is fsθg-closed set in Y such that B ≤ V . Now h−1(V ) = h−1(1Y \
h(1X \ F )) = 1X \ h−1(h(1X \ F )) ≤ F .

Conversely, let F be a fuzzy open set in X. Then 1X \ F is a fuzzy
closed set in X. We have to show that h(F ) is an fsθg-open set in
Y . Now h−1(1Y \ h(F )) ≤ 1X \ F (as h is injective). By assumption,
there exists an fsθg-closed set V in Y such that

1Y \ h(F ) ≤ V...(1)

and h−1(V ) ≤ 1X \ F . Therefore, F ≤ 1X \ h−1(V ) implies that

h(F ) ≤ h(1X \ h−1(V )) ≤ 1Y \ V...(2)
(as h is injective). Combining (1) and (2), h(F ) = 1Y \ V which is an
fsθg-open set in Y . Hence h is fsθg-open function.

Definition 4.13. A function h : X → Y is called fsθg-closed func-
tion if h(A) is fsθg-closed set in Y for each fuzzy closed set A in X.

Remark 4.14. Since fuzzy closed set is fsθg-closed set in an fts,
we can conclude that every fuzzy closed function is fsθg-closed func-
tion, but the converse may not be true as it follows from Example 4.9.
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Here 1X \ A ∈ τ c1 , but i(1X \ A) = 1X \ A ̸∈ τ c2 ⇒ i is not a fuzzy
closed function. But since every fuzzy set in (X, τ2) is fs

θg-closed set
in (X, τ2), clearly i is fsθg-closed function.
Theorem 4.15. A bijective function h : X → Y is fsθg-closed

function if and only if fsθgcl(h(A)) ≤ h(clA), for all A ∈ IX .
Proof. Let us suppose that h : X → Y be an fsθg-closed func-

tion and A ∈ IX . Then h(cl(A)) is fsθg-closed set in Y . Since
h(A) ≤ h(clA) and fsθgcl(h(A)) is the intersection of all fsθg-closed
sets in Y containing h(A), we have fsθgcl(h(A)) ≤ h(clA).
Conversely, let for any A ∈ IX , fsθgcl(h(A)) ≤ h(clA). Let U be

any fuzzy closed set in X. Then h(U) = h(clU) ≥ fsθgcl(h(U)) ⇒
h(U) is an fsθg-closed set in Y ⇒ h is an fsθg-closed function.
Theorem 4.16. If h : X → Y is an fsθg-closed bijective function,

then the following statements hold:
(i) for each fuzzy point xα in X and each fuzzy closed set U in X with
xα /qU , there exists an fsθg-closed set V in Y with h(xα) /qV such that
V ≥ h(U),
(ii) h−1(fsθgint(B)) ≥ int(h−1(B)), for all B ∈ IY .
Proof (i). Let xα be a fuzzy point in X and U be any fuzzy closed set
in X with xα /qU = clU ⇒ h(xα) /qh(clU) ≥ fsθgcl(h(U)) (by Theorem
4.15) ⇒ h(xα) /qV for some fsθg-closed set V in Y with V ≥ h(U).
(ii). Let B ∈ IY and xα be any fuzzy point in X such that
xα ∈ int(h−1(B)). Then there exists a fuzzy open set U in X with
U ≤ h−1(B) such that xα ∈ U . Then 1X \ U ≥ 1X \ h−1(B) ⇒
h(1X \ U) ≥ h(1X \ h−1(B)) where h(1X \ U) is an fsθg-closed set in
Y . Let V = 1Y \ h(1X \ U). Then V is an fsθg-open set in Y and
V = 1Y \ h(1X \ U) ≤ 1Y \ h(1X \ h−1(B)) ≤ 1Y \ (1Y \ B) = B (as
h is injective). Now U(x) ≥ α ⇒ xα /q(1X \ U) ⇒ h(xα) /qh(1X \ U)
⇒ h(xα) ≤ 1Y \ h(1X \ U) = V ⇒ h(xα) ∈ V = fsθgint(V ) ≤
fsθgint(B) ⇒ xα ∈ h−1(fsθgint(B)). Since xα is taken arbitrarily,
int(h−1(B)) ≤ h−1(fsθgint(B)), for all B ∈ IY .
Remark 4.17. Composition of two fsθg-closed (resp., fsθg-open)

functions need not be so, as it seen from the following example.
Example 4.18. Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X},

τ3 = {0X , 1X , B} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4.
Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity func-
tions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Clearly i1
and i2 are fsθg-closed functions. Let i3 = i2 ◦ i1 : (X, τ1) → (X, τ3).
We claim that i3 is not fsθg-closed function. Now 1X \ A = A ∈ τ c1 .
i3(1X \A) = 1X \A ≤ 1X \A ∈ FSO(X, τ3). But clτ3sintτ3(1X \A) =
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1X \B ̸≤ 1X \A ⇒ 1X \A is not an fsθg-closed set in (X, τ3) ⇒ i3 is
not an fsθg-closed function.

Similarly we can show that i3 is not fsθg-open function though i1
and i2 are so.

Theorem 4.19. If h1 : X → Y is fuzzy closed (resp., fuzzy open)
function and h2 : Y → Z is fsθg-closed (resp., fsθg-open) function,
then h2 ◦ h1 : X → Z is fsθg-closed (resp., fsθg-open) function.
Proof. Obvious.
Now to establish the mutual relationship of fsθg-closed function

with the functions defined in [4], we have to recall the following defi-
nition first.

Definition 4.20 [4]. Let h : (X, τ1) → (Y, τ2) be a function. Then
h is called an fg-closed function if h(A) is fg-closed set in Y for every
A ∈ τ c1 .

Remark 4.21. fg-closed function and fsθg-closed function are in-
dependent concepts follow from the following examples.

Example 4.22. fsθg-closed functions don’t have to be fg-closed.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =

0.5, A(b) = 0.7, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \A ∈ τ c1 , i(1X \A) = 1X \A < B ∈ FSO(X, τ2). As clτ2sintτ2(1X \
A) = 0X ⇒ 1X \ A is fsθg-closed set in (X, τ2) and hence i is an
fsθg-closed function. But clτ2(1X \A) = 1X \B ̸≤ B ⇒ 1X \A is not
an fg-closed set in (X, τ2). So i is not an fg-closed function.
Example 4.23. fg-closed functions don’t have to be fsθg-closed.

Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Clearly i is an
fg-closed function. Now A ∈ τ c1 , i(A) = A ≤ A ∈ FSO(X, τ2). But
clτ2(sintτ2A) = 1X \ B ̸≤ A ⇒ A is not an fsθg-closed set in (X, τ2).
Hence i is not an fsθg-closed function.

5. fsθg-Regular, fsθg-Normal and fsθg-Compact Spaces

In this section two new types of generalized version of fuzzy separa-
tion axioms are introduced and studied. Also a new type of generalized
version of fuzzy compactness is introduced.

Definition 5.1. An fts (X, τ) is said to be fsθg-regular space if for
any fuzzy point xt in X and each fsθg-closed set F in X with xt ̸∈ F ,
there exist U, V ∈ τ such that xt ∈ U, F ≤ V and U ̸ qV .
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Theorem 5.2. In an fts (X, τ), the following statements are equiv-
alent:
(i) X is fsθg-regular,
(ii) for each fuzzy point xt in X and any fsθg-open q-nbd U of xt,
there exists V ∈ τ such that xt ∈ V and clV ≤ U ,
(iii) for each fuzzy point xt in X and each fsθg-closed set A of X with
xt ̸∈ A, there exists U ∈ τ with xt ∈ U such that clU ̸ qA.

Proof (i) ⇒ (ii). Let xt be a fuzzy point in X and U , any fsθg-
open q-nbd of xt. Then xtqU ⇒ U(x) + t > 1 ⇒ xt ̸∈ 1X \ U which
is an fsθg-closed set in X. By (i), there exist V,W ∈ τ such that
xt ∈ V, 1X \ U ≤ W and V ̸ qW . Then V ≤ 1X \ W ⇒ clV ≤
cl(1X \W ) = 1X \W ≤ U .
(ii) ⇒ (iii). Let xt be a fuzzy point in X and A, an fsθg-closed set in
X with xt ̸∈ A. Then A(x) < t ⇒ xtq(1X \A) which being fsθg-open
set in X is fsθg-open q-nbd of xt. So by (ii), there exists V ∈ τ such
that xt ∈ V and clV ≤ 1X \ A. Then clV ̸ qA.
(iii) ⇒ (i). Let xt be a fuzzy point in X and F be any fsθg-closed set
in X with xt ̸∈ F . Then by (iii), there exists U ∈ τ such that xt ∈ U
and clU ̸ qF . Then F ≤ 1X \ clU (=V , say). So V ∈ τ and V ̸ qU as
U ̸ q(1X \ clU). Consequently, X is fsθg-regular space.

Definition 5.3. An fts (X, τ) is called fsθg-normal space if for each
pair of fsθg-closed sets A,B in X with A ̸ qB, there exist U, V ∈ τ
such that A ≤ U,B ≤ V and U ̸ qV .

Theorem 5.4. An fts (X, τ) is fsθg-normal space if and only if for
every fsθg-closed set F and fsθg-open set G in X with F ≤ G, there
exists H ∈ τ such that F ≤ H ≤ clH ≤ G.
Proof. Let X be fsθg-normal space and let F be fsθg-closed set

and G be fsθg-open set in X with F ≤ G. Then F ̸ q(1X \G) where
1X \ G is fsθg-closed set in X. By hypothesis, there exist H,T ∈ τ
such that F ≤ H, 1X \ G ≤ T and H ̸ qT . Then H ≤ 1X \ T ≤ G.
Therefore, F ≤ H ≤ clH ≤ cl(1X \ T ) = 1X \ T ≤ G.

Conversely, let A,B be two fsθg-closed sets in X with A ̸ qB.
Then A ≤ 1X \ B. By hypothesis, there exists H ∈ τ such that
A ≤ H ≤ clH ≤ 1X \ B ⇒ A ≤ H,B ≤ 1X \ clH (=V , say). Then
V ∈ τ and so B ≤ V . Also as H ̸ q(1X \ clH), H ̸ qV . Consequently,
X is fsθg-normal space.
Let us now recall the following definitions from [20, 25] for ready

references.
Definition 5.5. Let (X, τ) be an fts and A ∈ IX . A collection U

of fuzzy sets in X is called a fuzzy cover of A if
⋃
U ≥ A [25]. If each
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member of U is fuzzy open (resp., fuzzy regular open, fsθg-open) in
X, then U is called a fuzzy open [25] (resp., fuzzy regular open [2],
fsθg-open) cover of A. If, in particular, A = 1X , we get the definition
of fuzzy cover of X as

⋃
U = 1X [20].

Definition 5.6. Let (X, τ) be an fts and A ∈ IX . Then a fuzzy
cover U of A (resp., of X) is said to have a finite subcover U0 if U0 is
a finite subcollection of U such that

⋃
U0 ≥ A [25]. If, in particular

A = 1X , we get
⋃

U0 = 1X [20].
Definition 5.7. Let (X, τ) be an fts and A ∈ IX . Then A is called

fuzzy compact [20] (resp., fuzzy almost compact [21], fuzzy nearly
compact [28]) set if every fuzzy open (resp., fuzzy open, fuzzy regular
open) cover U of A has a finite subcollection U0 such that

⋃
U0 ≥ A

(resp.,
⋃

U∈U0

clU ≥ A,
⋃

U0 ≥ A). If, in particular, A = 1X , we get

the definition of fuzzy compact [20] (resp., fuzzy almost compact [21],

fuzzy nearly compact [22]) space as
⋃
U0 = 1X (resp.,

⋃
U∈U0

clU = 1X ,⋃
U0 = 1X).
Let us now introduce the following concept.
Definition 5.8. Let (X, τ) be an fts and A ∈ IX . Then A is called

fsθg-compact if every fuzzy cover U of A by fsθg-open sets of X has
a finite subcover. If, in particular, A = 1X , we get the definition of
fsθg-compact space X.
Theorem 5.9. Every fsθg-closed set in an fsθg-compact space X

is fsθg-compact.
Proof. Let A(∈ IX) be an fsθg-closed set in an fsθg-compact

space X. Let U be a fuzzy cover of A by fsθg-open sets of X. Then
V = U

⋃
(1X \ A) is a fuzzy cover of X by fsθg-open sets of X. As

X is fsθg-compact space, V has a finite subcollection V0 which also
covers X. If V0 contains 1X \ A, we omit it and get a finite subcover
of A. Hence A is fsθg-compact set.

Next we recall the following two definitions from [27, 26] for ready
references.

Definition 5.10 [27]. An fts (X, τ) is called fuzzy regular space if
for each fuzzy point xt in X and each fuzzy closed set F in X with
xt ̸∈ F , there exist U, V ∈ τ such that xt ∈ U , F ≤ V and U ̸ qV .

Definition 5.11 [26]. An fts (X, τ) is called fuzzy normal space if
for each pair of fuzzy closed sets A,B of X with A ̸ qB, there exist
U, V ∈ τ such that A ≤ U,B ≤ V and U ̸ qV .
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Remark 5.12. It is clear from above discussion that (i) fsθg-
regular (resp., fsθg-normal, fsθg-compact) space is fuzzy regular
(resp., fuzzy normal, fuzzy compact) space, but the converses are not
true, in general, follow from the following example.
(ii) In fTsθg-space, fuzzy regularity (resp., fuzzy normality, fuzzy com-
pactness) implies fsθg-regularity (resp., fsθg-normality, fuzzy fsθg-
compactness).

Example 5.13. Let X = {a}, τ = {0X , 1X}. Then (X, τ) is an fts.
Clearly (X, τ) is fuzzy regular space, fuzzy normal space and fuzzy
compact space. Here every fuzzy set is fsθg-open as well as fsθg-
closed set in (X, τ). Consider the fuzzy point a0.4 and the fuzzy set A
defined by A(a) = 0.3. Then a0.4 ̸∈ A which is an fsθg-closed set in
X. But there do not exist U, V ∈ τ such that a0.4 ∈ U,A ≤ V and
U ̸ qV . So (X, τ) is not fsθg-regular space.
Similarly considering two fuzzy sets A,B defined by A(a) =
0.3, B(a) = 0.1. Then A and B are fsθg-closed sets in X with A ̸ qB.
But there do not exist U, V ∈ τ such that A ≤ U,B ≤ V and U ̸ qV .
So (X, τ) is not an fsθg-normal space.
Again let U = {Un(a) : n ∈ N} where Un(a) =

n
n+1

, for all n ∈ N ofX.

Then U is an fsθg-open covering of X which has no finite subcovering.
Hence (X, τ) is not an fsθg-compact space.

6. fsθg-Continuous and fsθg-Irresolute Functions

In this section we first introduce two generalized version of func-
tions and then establish the mutual relationships of these functions
with the function defined in [4]. Afterwards the applications of these
two functions on fsθg-regular, fsθg-normal and fsθg-compact spaces
are discussed here.

Now we first introduce the following concept.
Definition 6.1. A function h : X → Y is said to be fsθg-

continuous function if h−1(V ) is fsθg-closed set in X for every fuzzy
closed set V in Y .
Theorem 6.2. Let h : (X, τ) → (Y, σ) be a function. Then the

following statements are equivalent:
(i) h is fsθg-continuous function,
(ii) for each fuzzy point xα in X and each fuzzy open nbd V of h(xα)
in Y , there exists an fsθg-open nbd U of xα in X such that h(U) ≤ V ,
(iii) h(fsθgcl(A)) ≤ cl(h(A)), for all A ∈ IX ,
(iv) fsθgcl(h−1(B)) ≤ h−1(clB), for all B ∈ IY .
Proof (i) ⇒ (ii). Let xα be a fuzzy point in X and V , any fuzzy
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open nbd of h(xα) in Y . Then xα ∈ h−1(V ) which is fsθg-open set in
X (by (i)). Let U = h−1(V ). Then h(U) = h(h−1(V )) ≤ V .
(ii) ⇒ (i). Let A be any fuzzy open set in Y and xα, a fuzzy point in X
such that xα ∈ h−1(A). Then h(xα) ∈ A where A is a fuzzy open nbd
of h(xα) in Y . By (ii), there exists an fsθg-open nbd U of xα in X such
that h(U) ≤ A. Then xα ∈ U ≤ h−1(A) ⇒ xα ∈ U = fsθgint(U) ≤
fsθgint(h−1(A)). Since xα is taken arbitrarily and h−1(A) is the union
of all fuzzy points in h−1(A), h−1(A) ≤ fsθgint(h−1(A)). So h−1(A)
is an fsθg-open set in X. Hence h is an fsθg-continuous function.
(i) ⇒ (iii). Let A ∈ IX . Then cl(h(A)) is a fuzzy closed
set in Y . By (i), h−1(cl(h(A))) is fsθg-closed set in X.
Now A ≤ h−1(h(A)) ≤ h−1(cl(h(A))) and so fsθgcl(A) ≤
fsθgcl(h−1(cl(h(A)))) = h−1(cl(h(A))) and so h(fsθgcl(A)) ≤
cl(h(A)).
(iii) ⇒ (i). Let V be a fuzzy closed set in Y . Put U = h−1(V ). Then
U ∈ IX . By (iii), h(fsθgcl(U)) ≤ cl(h(U)) = cl(h(h−1(V ))) ≤ clV =
V implies that fsθgcl(U) ≤ h−1(V ) = U and so U is fsθg-closed set
in X Hence h is fsθg-continuous function.
(iii) ⇒ (iv). Let B ∈ IY and A = h−1(B). Then A ∈ IX . By (iii),
h(fsθgcl(A)) ≤ cl(h(A)). So h(fsθgcl(h−1(B))) ≤ cl(h(h−1(B))) ≤
clB. Then fsθgcl(h−1(B)) ≤ h−1(clB).
(iv) ⇒ (iii). Let A ∈ IX . Then h(A) ∈ IY . By
(iv), fsθgcl(h−1(h(A))) ≤ h−1(cl(h(A))). Then fsθgcl(A) ≤
fsθgcl(h−1(h(A))) ≤ h−1(cl(h(A))) ⇒ h(fsθgcl(A)) ≤ cl(h(A)).
Remark 6.3. Composition of two fsθg-continuous functions need

not be so, as it seen from the following example.
Example 6.4. Let X = {a, b}, τ1 = {0X , 1X , B} τ2 = {0X , 1X},

τ3 = {0X , 1X , A} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4.
Then (X, τ1), (X, τ2) and (X, τ3) are fts’s. Consider two identity
functions i1 : (X, τ1) → (X, τ2) and i2 : (X, τ2) → (X, τ3). Then
clearly i1 and i2 are fsθg-continuous functions. Now A ∈ τ c3 . So
(i2 ◦ i1)−1(A) = A < A ∈ FSO(X, τ1) (as FSO(X, τ1) = {0X , 1X , U}
where B ≤ U ≤ 1X \ B). But clτ1sintτ1(A) = 1X \ B ̸≤ A. So A is
not an fsθg-closed set in (X, τ1) ⇒ i2 ◦ i1 is not an fsθg-continuous
function.

Let us now recall the following definition from [20] for ready refer-
ences.

Definition 6.5 [20]. A function h : X → Y is called fuzzy contin-
uous function if h−1(V ) is fuzzy closed set in X for every fuzzy closed
set V in Y .
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Remark 6.6. Since every fuzzy closed set is fsθg-closed set, it is
clear that fuzzy continuous function is fsθg-continuous function. But
the converse is not necessarily true, follows from the following exam-
ple.

Example 6.7. Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A}
where A(a) = A(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s. Con-
sider the identity function i : (X, τ1) → (X, τ2). Since every fuzzy
set in (X, τ1) is fs

θg-closed set in (X, τ1), clearly i is fsθg-continuous
function. But A ∈ τ c2 , i

−1(A) = A ̸∈ τ c1 ⇒ i is not fuzzy continuous
function.

Theorem 6.8. If h1 : X → Y is fsθg-continuous function and
h2 : Y → Z is fuzzy continuous function, then h2 ◦ h1 : X → Z is
fsθg-continuous function.
Proof. Obvious.
Theorem 6.9. If a bijective function h : X → Y is fsθg-continuous,

fuzzy open function from an fsθg-regular space X onto an fts Y , then
Y is fuzzy regular space.

Proof. Let yα be a fuzzy point in Y and F , a fuzzy closed set in
Y with yα ̸∈ F . As h is bijective, there exists unique x ∈ X such
that h(x) = y. So h(xα) ̸∈ F ⇒ xα ̸∈ h−1(F ) where h−1(F ) is fsθg-
closed set in X (as h is an fsθg-continuous function). As X is fsθg-
regular space, there exist U, V ∈ τ such that xα ∈ U, h−1(F ) ≤ V
and U /qV . Then h(xα) ∈ h(U), F = h(h−1(F )) (as h is bijec-
tive) ≤ h(V ) and h(U) /qh(V ) where h(U) and h(V ) are fuzzy open
sets in Y . (Indeed, h(U)qh(V ) ⇒ there exists z ∈ Y such that
[h(U)](z) + [h(V )](z) > 1 ⇒ U(h−1(z)) + V (h−1(z)) > 1 as h is
bijective ⇒ UqV , a contradiction). Hence Y is a fuzzy regular space.

In a similar manner we can state the following theorems easily the
proofs of which are same as that of Theorem 6.9.

Theorem 6.10. If a bijective function h : X → Y is fsθg-
continuous, fuzzy open function from an fsθg-normal space X onto
an fts Y , then Y is fuzzy normal space.

Theorem 6.11. If a bijective function h : X → Y is fsθg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fTsθg-space X onto an fts Y , then Y is fuzzy regular (resp.,
fuzzy normal) space.

Definition 6.12. A function h : X → Y is called fsθg-irresolute
function if h−1(U) is an fsθg-open set in X for every fsθg-open set U
in Y .
Theorem 6.13. A function h : X → Y is fsθg-irresolute function
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if and only if for each fuzzy point xα in X and each fsθg-open nbd V
in Y of h(xα), there exists an fsθg-open nbd U in X of xα such that
h(U) ≤ V .

Proof. The proof is same as that of Theorem 6.2 (i)⇔(ii).
Now we state the following two theorems easily the proofs of which

are similar to that of Theorem 6.9.
Theorem 6.14. If a bijective function h : X → Y is fsθg-irresolute,

fuzzy open function from an fsθg-regular (resp., fsθg-normal) space
X onto an fts Y , then Y is fsθg-regular (resp., fsθg-normal) space.

Theorem 6.15. If a bijective function h : X → Y is fsθg-irresolute,
fuzzy open function from an fsθg-regular (resp., fsθg-normal) space
X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.16. If a bijective function h : X → Y is fsθg-irresolute,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), fTsθg-
space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy normal)
space.

Theorem 6.17. Let h : X → Y be an fsθg-continuous function
from an fts X onto an fts Y and A(∈ IX) be an fsθg-compact set in
X. Then h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy
nearly compact) set in Y .

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy cover of h(A)
by fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y .

Then h(A) ≤
⋃
α∈Λ

Uα Then A ≤ h−1(
⋃
α∈Λ

Uα) =
⋃
α∈Λ

h−1(Uα). Then

V = {h−1(Uα) : α ∈ Λ} is a fuzzy cover of A by fsθg-open sets of X
as h is an fsθg-continuous function. As A is fsθg-compact set in X,

there exists a finite subcollection Λ0 of Λ such that A ≤
⋃
α∈Λ0

h−1(Uα).

So h(A) ≤ h(
⋃
α∈Λ0

h−1(Uα)) ≤
⋃
α∈Λ0

Uα. Hence h(A) is fuzzy compact

(resp., fuzzy almost compact, fuzzy nearly compact) set in Y .
Since fuzzy open set is fsθg-open, we can state the following theo-

rems easily the proofs of which are same as that of Theorem 6.17.
Theorem 6.18. Let h : X → Y be an fsθg-irresolute function

from an fts X onto an fts Y and A(∈ IX) be an fsθg-compact set in
X. Then h(A) is fsθg-compact (resp., fuzzy compact, fuzzy almost
compact, fuzzy nearly compact) set in Y .

Theorem 6.19. Let h : X → Y be an fsθg-continuous function
from an fsθg-compact space X onto an fts Y . Then Y is fuzzy com-
pact (resp., fuzzy almost compact, fuzzy nearly compact) space.
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Theorem 6.20. Let h : X → Y be an fsθg-irresolute function from
an fsθg-compact space X onto an fts Y . Then Y is fsθg-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Theorem 6.21. Let h : X → Y be an fsθg-continuous function
from a fuzzy compact, fTsθg-space X onto an fts Y . Then Y is fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.22. Let h : X → Y be an fsθg-irresolute function
from a fuzzy compact, fTsθg-space X onto an fts Y . Then Y is fsθg-
compact (resp., fuzzy compact, fuzzy almost compact, fuzzy nearly
compact) space.

Remark 6.23. It is clear from definitions that (i) fsθg-irresolute
function is fsθg-continuous, but the converse may not be true, as it
seen from the following example.
Also (ii) fuzzy continuity and fsθg-irresoluteness are independent con-
cepts follow from the following examples.
(iii) Composition of two fsθg-irresolute functions is also so.
Example 6.24. Fuzzy continuous functions, fsθg-continuous func-

tions don’t have to be fgsθ-irresolute.
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) =
0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). Clearly i is fsθg-continuous
as well as fuzzy continuous function. Now every fuzzy set in (X, τ2)
is fsθg-closed set in (X.τ2). Consider the fuzzy set C defined by
C(a) = C(b) = 0.5. Then C is fsθg-closed set in (X, τ2). Now
i−1(C) = C < C ∈ FSO(X, τ1). But clτ1sintτ1C = 1X \ A ̸≤ C ⇒ C
is not an fsθg-closed set in (X, τ1) ⇒ i is not an fsθg-irresolute func-
tion.

Example 6.25. fsθg-irresoluteness does not imply fuzzy continu-
ity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Since every fuzzy set in (X, τ1) is fsθg-closed
set in (X, τ1), clearly i is fsθg-irresolute function. Also i is not fuzzy
continuous function as A ∈ τ2, i

−1(A) = A ̸∈ τ1.
Theorem 6.26. Let h : X → Y be an fsθg-continuous function

where Y is an fTsθg-space. Then h is fsθg-irresolute function.
Proof. Obvious.
Theorem 6.27. If h1 : X → Y is fsθg-irresolute function and

h2 : Y → Z is fsθg-continuous function, then h2 ◦ h1 : X → Z is an
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fsθg-continuous function.
Proof. Obvious.
Let us first recall the definition of the function defined in [4].
Definition 6.28 [4]. Let h : (X, τ1) → (Y, τ2) be a function. Then

h is called fg-continuous function if h−1(V ) is fg-closed set in X for
every V ∈ τ c2 .

Remark 6.29. It is clear from definitions that fg-continuity and
fsθs-continuity are independent concepts follow from the following ex-
amples.

Example 6.30. fsθg-continuity does not imply fg-continuity
Let X = {a, b}, τ1 = {0X , 1X , B}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.7, B(a) = 0.5, B(b) = 0.4. Then (X, τ1) and (X, τ2)
are fts’s. Consider the identity function i : (X, τ1) → (X, τ2). Now
1X \ A ∈ τ c2 , i−1(1X \ A) = 1X \ A < B ∈ FSO(X, τ1) (also
B ∈ τ1). Then clτ1sintτ1(1X \ A) = 0X < B implies that 1X \ A
is fsθg-closed set in (X, τ1) and so i is fsθg-continuous function. But
clτ1(1X \ A) = 1X \ B ̸≤ B. Then 1X \ A is not an fg-closed set in
(X, τ1). Hence i is not an fg-continuous function.

Example 6.31. fg-continuity does not imply fsθg-continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X , B} where A(a) =
0.5, A(b) = 0.4, B(a) = B(b) = 0.5. Then (X, τ1) and (X, τ2) are fts’s.
Consider the identity function i : (X, τ1) → (X, τ2). Now B ∈ τ c2 ,
i−1(B) = B ≤ B ∈ FSO(X, τ1). But clτ1(sintτ1B) = 1X \ A ̸≤ B.
Then B is not fsθg-closed set in (X, τ1). So i is not an fsθg-continuous
function. Again 1X is the only fuzzy open set in (X, τ1) containing B
and so i fg-continuous function.

Remark 6.32. Let h : X → Y be a function where X is an
fTsθg-space. Then if h is an fsθg-continuous function, then h is an
fg-continuous function.

7. fsθg-T2-Space

A new type of fuzzy T2-space is introduced in this section. Also a
strong form of fsθg-continuity is introduced and studied. Lastly the
applications of this newly defined function and the functions defined
earlier in this paper are established.

We first recall the definition and theorem from [27, 28] for ready
references.

Definition 7.1 [27]. An fts (X, τ) is called fuzzy T2-space if for
any two distinct fuzzy points xα and yβ; when x ̸= y, there exist
fuzzy open sets U1, U2, V1, V2 such that xα ∈ U1, yβqV1, U1 ̸ qV1 and



24 ANJANA BHATTACHARYYA

xαqU2, yβ ∈ V2, U2 ̸ qV2; when x = y and α < β (say), there exist fuzzy
open sets U and V in X such that xα ∈ U, yβqV and U ̸ qV .
Theorem 7.2 [28]. An fts (X, τ) is fuzzy T2-space if and only if for

any two distinct fuzzy points xα and yβ in X; when x ̸= y, there exist
fuzzy open sets U, V in X such that xαqU , yβqV and U ̸ qV ; when
x = y and α < β (say), xα has a fuzzy open nbd U and yβ has a fuzzy
open q-nbd V such that U ̸ qV .

Now we introduce the following concept.
Definition 7.3. An fts (X, τ) is called fsθg-T2-space if for any two

distinct fuzzy points xα and yβ in X; when x ̸= y, there exist fsθg-
open sets U, V in X such that xαqU , yβqV and U ̸ qV ; when x = y
and α < β (say), xα has an fsθg-open nbd U and yβ has an fsθg-open
q-nbd V such that U ̸ qV .

Theorem 7.4. If an injective function h : X → Y is fsθg-
continuous function from an fts X onto a fuzzy T2-space Y , then X is
fsθg-T2-space.
Proof. Let xα and yβ be two distinct fuzzy points in X. Then

h(xα) (= zα, say) and h(yβ) (= wβ, say) are two distinct fuzzy points
in Y .
Case I. Suppose x ̸= y. Then z ̸= w. Since Y is fuzzy T2-space, there
exist fuzzy open sets U, V in Y such that zαqU,wβqV and U ̸ qV .
As h is fsθg-continuous function, h−1(U) and h−1(V ) are fsθg-open
sets in X with xαqh

−1(U), yβqh
−1(V ) and h−1(U) ̸ qh−1(V ) [Indeed,

zαqU ⇒ U(z) + α > 1 ⇒ U(h(x)) + α > 1 ⇒ [h−1(U)](x) + α > 1 ⇒
xαqh

−1(U). Again, h−1(U)qh−1(V ) ⇒ there exists t ∈ X such that
[h−1(U)](t) + [h−1(V )](t) > 1 ⇒ U(h(t)) + V (h(t)) > 1 ⇒ UqV , a
contradiction].
Case II. Suppose x = y and α < β (say). Then z = w and
α < β. Since Y is fuzzy T2-space, there exist a fuzzy open nbd
U of xα and a fuzzy open q-nbd V of wβ such that U ̸ qV . Then
U(z) ≥ α ⇒ [h−1(U)](x) ≥ α ⇒ xα ∈ h−1(U), yβqh

−1(V ) and
h−1(U) ̸ qh−1(V ) where h−1(U) and h−1(V ) are fsθg-open sets in X
as h is fsθg-continuous function. Consequently, X is fsθg-T2-space.

Similarly we can state the following theorems easily the proofs of
which are similar to that of Theorem 7.4.

Theorem 7.5. If a bijective function h : X → Y is fsθg-irresolute
function from an fts X onto an fsθg-T2-space Y , then X is fsθg-T2-
space.

Theorem 7.6. If a bijective function h : X → Y is fsθg-continuous
function from an fTsθg-space X onto a fuzzy T2-space Y , then X is
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fuzzy T2-space.
Theorem 7.7. If a bijective function h : X → Y is fsθg-irresolute

function from an fTsθg-space X onto an fsθg-T2-space Y , then X is
fuzzy T2-space.

Theorem 7.8. If a bijective function h : X → Y is fsθg-open func-
tion from a fuzzy T2-space X onto an fts Y , then Y is fsθg-T2-space.
Theorem 7.9. If a bijective function h : X → Y is fsθg-open

function from a fuzzy T2-space X onto an fTsθg-space Y , then Y is
fuzzy T2-space.

Now we introduce the strong form of fsθg-continuous function.
Definition 7.10. A function h : X → Y is called strongly fsθg-

continuous function if h−1(V ) is fuzzy closed set in X for every fsθg-
closed set V in Y .
Theorem 7.11. A function h : X → Y is strongly fsθg-continuous

function if and only if for each fuzzy point xα in X and each fsθg-open
nbd V in Y of h(xα), there exists a fuzzy open nbd U in X of xα such
that h(U) ≤ V .
Proof. The proof is similar to that of Theorem 6.2 (i)⇔(ii).
Remark 7.12. (i) Composition of two strongly fsθg-continuous

functions is also so.
(ii) Strongly fsθg-continuity implies fuzzy continuity, fsθg-continuity
and fsθg-irresoluteness, but the reverse implications are not necessar-
ily true, follow from the following examples.

Example 7.13. fsθg-continuity, fsθg-irresoluteness do not imply
strongly fsθg-continuity
Let X = {a, b}, τ1 = {0X , 1X}, τ2 = {0X , 1X , A} where A(a) =
0.5, A(b) = 0.4. Then (X, τ1) and (X, τ2) are fts’s. Consider the
identity function i : (X, τ1) → (X, τ2). As every fuzzy set in
(X, τ1) is fsθg-closed set in (X, τ1), clearly i is fsθg-continuous as
well as fsθg-irresolute function. Now consider the fuzzy set B de-
fined by B(a) = B(b) = 0.4. As B ≤ A ∈ FSO(X, τ2),we have
clτ2(sintτ2B) = 0X < A, clearly B is fsθg-closed set in (X, τ2). But
i−1(B) = B ̸∈ τ c1 ⇒ i is not a strongly fsθg-continuous function.
Example 7.14. Fuzzy continuity does not imply strongly fsθg-

continuity
Let X = {a, b}, τ1 = {0X , 1X , A}, τ2 = {0X , 1X} where A(a) = A(b) =
0.5. Then (X, τ1) and (X, τ2) are fts’s. Consider the identity function
i : (X, τ1) → (X, τ2). Clearly i is fuzzy continuous function. Now
every fuzzy set in (X, τ2) is fsθg-closed set in (X, τ2). Consider the
fuzzy set B defined by B(a) = B(b) = 0.4. Then B is fsθg-closed set
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in (X, τ2). But i
−1(B) = B ̸∈ τ c1 ⇒ i is not a strongly fsθg-continuous

function.
Theorem 7.15. If h1 : X → Y is strongly fsθg-continuous function

and h2 : Y → Z is fsθg-continuous function, then h2 ◦ h1 : X → Z is
fuzzy continuous function.

Proof. Obvious.
Now we can state the following theorems easily the proofs of which

are similar to that of Theorem 6.9, Theorem 6.17 and Theorem 7.4.
Theorem 7.16. If a bijective function h : X → Y is strongly fsθg-

continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fsθg-regular (resp., fsθg-
normal) space.

Theorem 7.17. If a bijective function h : X → Y is strongly fsθg-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y , then Y is fuzzy regular (resp., fuzzy
normal) space.

Theorem 7.18. If a bijective function h : X → Y is strongly fsθg-
continuous function from an fts X onto an fsθg-T2-space Y , then X
is fuzzy T2-space.

Theorem 7.19. If a bijective function h : X → Y is strongly fsθg-
continuous function from a fuzzy compact space X onto an fts Y , then
Y is fsθg-compact (resp., fuzzy compact, fuzzy almost compact, fuzzy
nearly compact) space.

Remark 7.20. Clearly fuzzy T2-space is fsθg-T2-space, but the
converse is not necessarily true, follows from the following example.

Example 7.21. Let X = {a, b}, τ = {0X , 1X}. Then (X, τ) is an
fts. Clearly (X, τ) is not a fuzzy T2-space. Here every fuzzy set in
(X, τ) is fsθg-open set in (X, τ). Clearly X is fsθg-T2-space.
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