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Abstract. In this paper a new type of generalized version of
fuzzy closed set, viz., fs%g-closed set is introduced and studied. Using
this concept as a basic tool, here we introduce and study fs’g-open
and fs?g-closed functions, the class of which are strictly larger than
that of fuzzy open and fuzzy closed functions respectively. Afterwards,
we introduce and study fs’g-continuous and fs?g-irresolute functions.
Next we introduce fs?g-regular, fsg-normal, fs’g-compact and fsg-
Ty-spaces and the applications of fs?g-open and fs?g-closed functions
on these spaces are discussed.

1. INTRODUCTION

fg-closed set is introduced in [3, 4]. Afterwards, different types of
generalized version of fuzzy closed sets are introduced and studied. In
this context we have to mention [6, 7, 8, 11, 12, 13, 14, 16, 17, 18]. In
2] fuzzy semiopen set is introduced. Using this concept as a basic tool,
here we introduce fs’g-closed set, the class of which is an independent
concept of fg-closed set. After introducing fuzzy m-structure in [1],
fuzzy minimal space (m-space, for short) is introduced in [5]. However
generalized version of different types of closed sets in fuzzy m-space
are introduced and studied in [9, 10, 15].
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normal space.

(2010) Mathematics Subject Classification: 54A40, 03E72



6 ANJANA BHATTACHARYYA

2. PRELIMINARIES

Throughout this paper (X, 7) or simply by X we shall mean a fuzzy
topological space (fts, for short) in the sense of Chang [20]. In [32],
L.A. Zadeh introduced fuzzy set as follows: A fuzzy set A is a function
from a non-empty set X into the closed interval I = [0, 1], i.e., A € I¥.
The support [32] of a fuzzy set A, denoted by suppA and is defined
by suppA = {x € X : A(z) # 0}. The fuzzy set with the singleton
support {z} C X and the value t (0 < t < 1) will be denoted by x;. Ox
and 1y are the constant fuzzy sets taking values 0 and 1 respectively
in X. The complement of a fuzzy set A in X is denoted by 1x \ A and
is defined by (1x \ A)(x) = 1 — A(x), for each x € X [32]. For any
two fuzzy sets A, B in X, A < B means A(x) < B(z), for all z € X
[32] while AgB means A is quasi-coincident (q-coincident, for short)
with B, if there exists © € X such that A(x) + B(z) > 1 [30]. The
negation of these two statements will be denoted by A £ B and A 4B
respectively. For a fuzzy point x; and a fuzzy set A, xr; € A means
A(z) > t, ie., 2y < A. For a fuzzy set A, clA and intA will stand
for fuzzy closure [20] and fuzzy interior [20] of A respectively. A fuzzy
set A is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy
point x,, if there exists a fuzzy open set U in X such that z, € U < A
[30]. If, in addition, A is fuzzy open, then A is called fuzzy open nbd
of z, [30]. A fuzzy set A is called a fuzzy quasi neighbourhood (fuzzy
g-nbd, for short) [30] of a fuzzy point z, in an fts X if there is a fuzzy
open set U in X such that z,qU < A. If; in addition, A is fuzzy open,
then A is called fuzzy open ¢-nbd [30] of x,. A fuzzy set A in X is
called fuzzy semiopen [2] if A < cl(intA). The complement of a fuzzy
semiopen set is called fuzzy semiclosed [2]. The intersection (resp.,
union) of all fuzzy semiclosed (resp., fuzzy semiopen) sets containing
(resp., contained in) a fuzzy set A is called fuzzy semiclosure [2] (resp.,
fuzzy semiinterior [2]) of A, to be denoted by sclA (resp., sintA). The
collection of all fuzzy semiopen (resp. fuzzy semiclosed) sets in an fts
(X, 7) is denoted by F'SO(X,T) (resp., FSC(X,T1)).

3. fs?g-CLOSED SET

In this section fs’g-closed set is introduced and studied. Some im-
portant properties of this newly defined set are discussed here .
Definition 3.1. Let (X, 7) be an fts and A € IX. Then A is called
fs?g-closed set in X if cl(sintA) < U whenever A < U € FSO(X).
The complement of this set is called fsg-open set in X.
The collection of all fs’g-closed (resp., fs?g-open) sets in an fts X is
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denoted by Fs’GC(X) (resp., Fs’GO(X)).

Remark 3.2. Union and intersection of two fs’g-closed sets may
not be so, as it seen from the following example.

Example 3.3. Let X = {a,b}, 7 = {0x, 1x, A} where A(a) =

0.5, A(b) = 0.4. Then (X, 7) is an fts. Here FISO(X) = {0x,1x,U}
where A < U < 1x \ A. Now consider the fuzzy sets B and C' defined
by B(a) = 0.5,B(b) = 0,C(a) = 0,C(b) = 0.5. Clearly B and C' are
fs?g-closed sets in (X, 7). Let D = B\/C. Then D(a) = D(b) = 0.5.
Now D < D € FSO(X). But cl(sintD) = 1x \ A £ D = D is not
fs%g-closed set in X.
Again consider two fuzzy sets S and T defined by S(a) = 0.6, S(b) =
0.5,T(a) = 0.5, T(b) = 0.7. Then clearly S,T € Fs’GC(X). Let
U=SNAT. Then U(a) = U(b) =0.5. Now U < U € FSO(X). But
c(sintU) =1x \A L U = U ¢ Fs’GC(X).

Note 3.4. So we can conclude that the set of all fs?g-open sets in
an fts (X, 7) does not form a fuzzy topology.

Theorem 3.5. Let (X,7) be an fts and A,B € [*. If A< B <
cl(sintA) and A is fs?g-closed set in X, then B is also fs’g-closed set
in X.

Proof. Let U € FSO(X) be such that B < U. Then by hypothe-
sis, A< B<U. As Ais fs’g-closed set in X, cl(sintA) < U. Then
cl(sintA) < cl(sintB) < cl(sint(cl(sintA))) < cl(sintA) < U = B is
fs?g-closed set in X.

Theorem 3.6. Let (X,7) be an fts and A, B € IX. If int(sclA) <
B < A and Ais fs?g-open set in X, then B is also fs?g-open set in
X.

Proof. int(sclA) < B< A= 1x\A<l1x\B<l1yx\int(sclA) =
cl(sint(1x \ A)) where 1x \ A is fs’g-closed set in X. By Theorem
3.5, 1x \ B is fs’g-closed set in X = B is fs’g-open set in X.

Theorem 3.7. Let (X, 7) be an fts and A € IX. Then A is fs’g-
open set in X if and only if K < int(sclA) whenever K < A and K is
fuzzy semiclosed set in (X, 7).

Proof. Let A(€ IX) be fs’g-open set in X and K < A where K is
fuzzy semiclosed set in (X, 7). Then 1x \ A <1x\ K where 1x \ A is
fs?g-closed set in X and 1x \ K is fuzzy semiopen set in (X, 7). By
hypothesis, cl(sint(1x \ A)) < 1x \ K = 1x \int(sclA) < 1x \ K =
K <int(sclA).

Conversely, let K < int(sclA) whenever K < A, K € FSC(X).
Then 1x \ A < 1x \ K where 1x \ K € FSO(X). By hypothesis,
Ix \int(sclA) < 1x \ K = cl(sint(lx \ A)) < 1x \ K = 1x \ A is
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fs?g-closed set in X = A is fs?g-open set in X.

Theorem 3.8. Let (X,7) be an fts and A, B € IX. If Ais fs’g-
closed set in X and B is fuzzy semiclosed set in (X, 7) with A¢B.
Then cl(sintA)¢B.

Proof. By hypothesis, AJB = A < 1x \ B € FSO(X) =
cl(sintA) < 1x \ B = cl(sintA)¢B.

Remark 3.9. The converse of Theorem 3.8 may not be true, in
general, as it seen from the following example.

Example 3.10. Let X = {a,b}, 7 = {0x,1x, A, B,C} where
A(a) = 04, A(b) = 0.6, B(a) = 0.3, B(b) = 0.5,C(a) = 0.8,C(b) = 1.
Then (X, 7) is an fts. Consider the fuzzy set D defined by D(a) =
0.4,D(b) = 0.5. Then D < D € FSO(X). But cl(sintD) = clD =
1x\B £ D = D isnot fs’g-closed set in X. Again D¢(1x\C). Also
cl(sintD) = (1x \ B)¢d(1x \ C).

Now we recall the following definitions from [3, 4] for ready refer-
ences.

Definition 3.11 [3, 4]. Let (X,7) be an fts and A € I[*. Then A
is called fg-closed set if cIlA < U whenever A < U € 7.

Remark 3.12. It is clear from next examples that fg-closed set
and fs’g-closed are independent concepts.

Example 3.13. fs’g-closed sets don’t have to be fg-closed.

Let X = {a,b}, 7 = {0x,1x,A, B} where A(a) = 0.5, A(b) =
0.6, B(a) = 0.4, B(b) = 0.2. Then (X, 7) is an fts. Then FSO(X) =
{0x,1x,U,V} where A < U < 1x\ B,B <V <1x\ A. Consider
the fuzzy set C defined by C(a) = C(b) = 0.5. Then C < A € 7 (also
C <AeFSO(X)). Here clC = 1x \ B £ A = (C is not fg-closed
set in X. But cl(sintC) = 1x \ A< A= Cis fs’g-closed set in X.

Example 3.14. fg-closed sets don’t have to be fs?g-closed.

Let X = {a,b}, 7 = {Ox, 1x, A} where A(a) = 0.5, A(b) = 0.4.
Then (X,7) is an fts. Now consider the fuzzy set B defined by
B(a) = B(b) = 0.5. Then clearly B is fg-closed set but not fs’g-
closed set in X.

Definition 3.15. An fts (X, 7) is called fT,0g-space if every fs’g-
closed set in X is fuzzy closed set in X.

Now we introduce a new type of generalized version of neighbour-
hood system in an fts.

Definition 3.16. Let (X, 7) be an fts and x,, a fuzzy point in X.
A fuzzy set A is called fs?g-neighbourhood (fs?g-nbd, for short) of
T, if there exists an fs’g-open set U in X such that z, € U < A. If,
in addition, A is fs?g-open set in X, then A is called an fs’g-open
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nbd of z,.

Definition 3.17. Let (X,7) be an fts and z,, a fuzzy point in
X. A fuzzy set A is called fs’g-quasi neighbourhood (fs’g-g-nbd, for
short) of z, if there is an fs’g-open set U in X such that z,qU < A.
If, in addition, A is fs’g-open set in X, then A is called an fs’g-open
g-nbd of z,.

Note 3.18. (i) It is clear from definitions that every fs’g-open set

is an fs’g-open nbd of each of its points. But every fs’g-nbd of z,
may not be an fs?g-open set containing z,, follows from the following
example.
(ii) Also every fuzzy open nbd (resp., fuzzy open g-nbd) of a fuzzy
point z, is an fs’g-open nbd (resp., fs’g-open g-nbd) of z,. But
the converses are not necessarily true, in general, as it seen from the
following example.

Example 3.19. Let X = {a,b}, 7 = {0x,1x,A, B} where

A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.3. Then (X, 7) is an fts.
Here FSO(X) = {0x,1x,U} where B < U < 1x \ A. Consider the
fuzzy point ag 4 and the fuzzy set D defined by D(a) = 0.5, D(b) = 0.3.
Then clearly D is not an fs’g-closed set in X and so 1y \ D is
not fs’g-open set in X. Let us consider the fuzzy set C' defined by
C(a) = 0.5,C(b) = 0.6. Clearly C'is fsg-closed set in X and so 1x\C
is an fs?g-open set in X with 1x \ C < 1x \ D. Again ag4 € 1x \ C.
So 1x \ D is an fs’g-nbd of ag4, though it is not an fs?g-open set in
X.
Also consider the fuzzy set E defined by F(a) = 0.3, E(b) = 0.7 and
the fuzzy point agg. Then clearly E is an fs’g-closed set in X and so
1x \ B is fs?g-open set in X containing agg and so 1x \ E is fs?g-
open nbd of agg. But there does not exist any open set U in X with
ape € U < 1x \ E. Hence 1x \ F is not a fuzzy nbd of agg. Next
consider the fuzzy point ag4 and the fuzzy set E. Here 1x \ F is
fs’g-open g-nbd of ag4. But there does not exist any fuzzy open set
U <1x \ F in X which is g-coincident with ag4. So 1x \ F is not a
fuzzy open ¢-nbd of ag 4.

4. fs?g-OPEN FUNCTION AND fs%g-CLOSED FUNCTION

In this section, we first introduce and study a new type of gener-
alized version of fuzzy closure-like operator which is seen to be an
idempotent operator. Then using this operator as a basic tool, two
types of functions are introduced and characterized.
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Definition 4.1. Let (X,7) be an fts and A € I*X. Then fs’g-
closure and fs’g-interior of A, denoted by fs?gcl(A) and fs%gint(A),
are defined as follows:

fsPgcl(A) = N{F : A< F, Fis fs?g-closed set in X},

fsPgint(A) = \V{G : G < A G is fs?g-open set in X}.

Remark 4.2. It is clear from definition that for any A € I¥,
A < fsPgcl(A) < clA. If Ais fs’g-closed set in an fts X, then
A = fs%cl(A). Similarly, intA < fsgint(A) < A. If Ais fs%-
open set in an fts X, then A = fs’gint(A). It follows from Remark
3.2 that fs?gcl(A) (resp., fs’gint(A)) may not be fs’g-closed (resp.,
fs?g-open) set in an fts X.

Theorem 4.3. Let (X, 7) be an fts and A € I*. Then for a fuzzy
point z, in X, z, € fs’gcl(A) if and only if every fs?g-open g-nbd U
of xy, UqA.

Proof. Let x; € fs’gcl(A) for any fuzzy set A in an fts X and F
be any fs’g-open ¢-nbd of z;. Then x,qF = x; ¢ 1x \ F which is
fs?g-closed set in X. Then by Definition 4.1, A £ 1x \ F' = there
exists y € X such that A(y) > 1— F(y) = AqF.

Conversely, let for every fs’g-open ¢-nbd F of x;, FgA. If possible,
let 7, & fs’gcl(A). Then by Definition 4.1, there exists an fs’g-closed
set U in X with A < U, 2, ¢ U. Then x,q(1x \ U) which being fs’g-
open set in X is fs?g-open ¢-nbd of z,. By assumption, (1x \ U)gA
Hence (1x \ A)gA, a contradiction.

Theorem 4.4. Let (X, 7) be an fts and A, B € I, Then the fol-
lowing statements are true:
(i) f5gcl(0x) = Ox,
(ii) fs%gel(1x) = 1x,
(iii) A < B = fs%gcl(A) < fsgcl(B),
(iv) fs’gcl(AV B) = fs’gcl(A)  fs°gel(B),
(v) fsPgcl(ANB) < fsgel(A) A fs®gel(B), equality does not hold, in
general, follows from Example 3.3,
(vi) fs%gel(fs’gel(A)) = fs’gel(A).

Proof. (i), (ii) and (iii) are obvious.
(iv) From (iii), fs%gcl(A)\ fs?gcl(B) < fsgel(A\ B).
To prove the converse, let z, € fs’gcl(A\/ B). Then by Theo-
rem 4.3, for any fs’g-open set U in X with z,qU, Uq(A\ B) =
there exists y € X such that U(y) + maz{A(y), B(y)} > 1 = either
Uly)+ A(y) > 1 or U(y) + B(y) > 1 = either UgA or UgqB = either
T € fsPgcl(A) or x4 € fsPgcl(B) = x4 € fsPgcl(A)\ fslgel(B).
(v) Follows from (iii).
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(vi) As A < fsPgcl(A), for any A e X, fsgcl(A) <
fs°gel(fsgel(A)) (by (iii)).

Conversely, let z, € fs’gcl(fs?gcl(A)) = fs?gcl(B) where B =
fs?gcl(A). Let U be any fs?g-open set in X with z,qU. Then UqB
implies that there exists y € X such that U(y) + B(y) > 1. Let
B(y) = t. Then y,qU and y; € B = fs’gcl(A). So UgA implies that
1o € f%gcl(A). Hence fsPgel(fs?gcl(A)) < fsPgel(A). Consequently,
fsPgel(fs’gel(A)) = fs'gel(A).

Theorem 4.5. Let (X, 7) be an fts and A € I*. Then the following
statements hold:

(1) fs°gel(1x \ A) = 1x \ fs’gint(A)
(ii) fsPgint(1x \ A) = 1x \ fs?gcl(A).

Proof (i). Let z; € fs?gcl(1x \ A) for a fuzzy set A in an fts (X, 7).
If possible, let z; & 1x \ fs?gint(A). Then 1 — (fs%gint(A))(z) <
t = [fs%gint(A))(z) +t > 1 = fsgint(A)qr; = there exists
at least one fs’g-open set F' < A with z,¢F and so z,gA. As
1, € fsPgel(1x \ A), Fq(1x \ A) Then Ag(1x \ A), a contradiction.
Hence

fslgel(1x \ A) < 1x \ fs’gint(A)...(1)

Conversely, let ; € 1x\ fs’gint(A). Then 1—[(fs’gint(A)](z) > t.
So zyq(fs?gint(A)). So x,¢F for every fs’g-open set F contained in
A ... (2).

Let U be any fs’g-closed set in X such that 1x \ A < U. Then
1x \U < A. Now 1x \ U is fs’g-open set in X contained in A. By
(2), z4¢(1x \ U) implies that z; € U = x; € fs’gcl(1x \ A) and so

1y \ fsgint(A) < fs%gel(1x \ A)...(3).

Combining (1) and (3), (i) follows.
(ii) Putting 1x\ A for A in (i), we get fs?gcl(A) = 1x\ fs?gint(1x\A).
Hence fs?gint(1x \ A) = 1x \ fs?gcl(A).

Let us now recall the following definition from [31] for ready refer-
ences.

Definition 4.6 [31]. A function f : X — Y is called fuzzy open
(resp., fuzzy closed) if f(U) is fuzzy open (resp., fuzzy closed) set in
Y for every fuzzy open (resp., fuzzy closed) set U in X.

Let us now introduce the following concept.

Definition 4.7. A function h : X — Y is called fs’g-open function
if h(U) is fs’g-open set in Y for every fuzzy open set U in X.

Remark 4.8. Since fuzzy open set is fs?g-open set, we say that
fuzzy open function is fs?g-open function. But the converse need not
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be true, as it seen from the following example.

Example 4.9. fs?g-open functions don’t have to be fuzzy open.
Let X ={a,b}, m = {0x,1x, A}, 7o = {Ox, 1x} where A(a) = A(b) =
0.5. Then (X, ) and (X, 7») are fts’s. Consider the identity function
i:(X,1) — (X, 7). Since every fuzzy set in (X, 75) is fs’g-open set in
(X, 73), clearly i is fs’g-open function. But A € 71, i(A) = A& 1 =i
is not a fuzzy open function.

Theorem 4.10. For a bijective function h : X — Y, the following
statements are equivalent:

(i) his fs?g-open,

(ii) h(intA) < fs?gint(h(A)), for all A € I¥,

(iii) for each fuzzy point z, in X and each fuzzy open set U in X
containing z,, there exists an fs’g-open set V in Y containing h(z,)
such that V- < h(U).

Proof (i) = (ii). Let A € I*. Then intA is a fuzzy open set in
X. By (i), h(intA) is fs’g-open set in Y. Since h(intA) < h(A) and
fs?gint(h(A)) is the union of all fsg-open sets contained in h(A), we
have h(intA) < fs?gint(h(A)).

(ii) = (i). Let U be any fuzzy open set in X. Then hA(U) = h(intU) <
fs%gint(h(U)) (by (ii)) = h(U) is fs?g-open set in Y = h is fsg-
open function.

(ii) = (iii). Let z, be a fuzzy point in X, and U, a fuzzy open set in
X such that z, € U. Then h(z,) € h(U) = h(intU) < fs?gint(h(U))
(by (ii)). Then h(U) is fs’g-open set in Y. Let V = h(U). Then
h(zy) € V and V < h(U).

(ii) = (i). Let U be any fuzzy open set in X and y,, any fuzzy
point in A(U), i.e., yo € h(U). Then there exists unique z € X
such that h(x) = y (as h is bijective). Then [A(U)|(y) > a =
Uh™y) > a = Ulx) > a = z, € U. By (iii), there ex-
ists fs’g-open set V in Y such that h(z,) € V and V < h(U).
Then h(z,) € V = fsgint(V) < fsgint(h(U)). Since y, is
taken arbitrarily and A(U) is the union of all fuzzy points in h(U),
h(U) < fs?gint(f(U)) = h(U) is fs?g-open set in Y = h is an fs%g-
open function.

Theorem 4.11. If h : X — Y is fs’g-open, bijective function,
then the following statements are true:

(i) for each fuzzy point z, in X and each fuzzy open ¢g-nbd U of z,
in X, there exists an fs’g-open ¢-nbd V of h(z,) in Y such that
V< (D),

(ii) h=Y(fs%gcl(B)) < cl(h~(B)), for all B € IV.
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Proof (i). Let x, be a fuzzy point in X and U be any fuzzy open ¢g-nbd
of 1, in X. Then x,qU = intU = h(x,)qh(intU) < fs?gint(h(U))
(by Theorem 4.10 (i)=(ii)) implies that there exists at least one fs%g-
open ¢g-nbd V of h(z,) in Y with V < h(U).
(ii) Let x, be any fuzzy point in X such that =, & cl(h~'(B)) for any
B € IV. Then there exists a fuzzy open ¢-nbd U of z, in X such that
Ugh™'(B). Now

h(z)gh(U)...(1)
where h(U) is fs’g-open set in Y. Now h™*(B) < 1y \ U which is a
fuzzy closed set in X = B < h(1x \U) (as h is injective) < 1y \ A(U).
So Bgh(U). Let V = 1y \ h(U). Then B < V which is fs’g-closed
set in Y. We claim that h(z,) ¢ V. If possible, let h(z,) € V =
1y \ A(U). Then 1 — [h(U)](h(z)) > a = h(U)gh(z,), contradicting
(1). So h(wy) € V = h(xs) & fs%gcl(B) = x4 & h™1(fs%gcl(B)) =
h(fs%gel(B)) < cl(h(B)).

Theorem 4.12. An injective function A : X — Y is fs’g-open

if and only if for each B € IY and F, a fuzzy closed set in X with
h=1(B) < F, there exists an fs’g-closed set V in Y such that B <V
and h™ (V) < F.
Proof. Let B € I" and F, a fuzzy closed set in X with h=1(B) < F.
Then 1x \ h"Y(B) > 1x \ F where 1x \ F is a fuzzy open set in
X = h(lx\ F) <h(Ix \ h7'(B)) < 1y \ B (as h is injective) where
h(1x \ F) is an fs?g-open set in Y. Let V = 1y \ h(1x \ F). Then
V is fs?g-closed set in Y such that B < V. Now A~ 1(V) = h71(1y \
WLy \ F)) = 1y \ A~ (h(1x \ F)) < F.

Conversely, let F' be a fuzzy open set in X. Then 1y \ F' is a fuzzy
closed set in X. We have to show that h(F) is an fs’g-open set in
Y. Now h=(1y \ h(F)) < 1x \ F (as h is injective). By assumption,
there exists an fs?g-closed set V in Y such that

Iy \ h(F) < V..(1)
and h=1(V) < 1x \ F. Therefore, F < 1x \ h= (V) implies that
h(F) <h(lx \h'(V)) <1y \ V...(2)

(as h is injective). Combining (1) and (2), h(F) = 1y \ V which is an
fs%g-open set in Y. Hence h is fs’g-open function.
Definition 4.13. A function h : X — Y is called fs’g-closed func-
tion if h(A) is fs?g-closed set in Y for each fuzzy closed set A in X.
Remark 4.14. Since fuzzy closed set is fs%g-closed set in an fts,
we can conclude that every fuzzy closed function is fs’g-closed func-
tion, but the converse may not be true as it follows from Example 4.9.
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Here 1x \ A € 7, but i(1x \ A) = 1x \ A € 75 = ¢ is not a fuzzy
closed function. But since every fuzzy set in (X, 1) is fs’g-closed set
in (X, 7), clearly i is fs’g-closed function.

Theorem 4.15. A bijective function h : X — Y is fs?g-closed
function if and only if fs?gcl(h(A)) < h(clA), for all A € I*.

Proof. Let us suppose that A : X — Y be an fs’g-closed func-
tion and A € I*. Then h(cl(A)) is fs’g-closed set in Y. Since
h(A) < h(clA) and fs?gcl(h(A)) is the intersection of all fs’g-closed
sets in Y containing h(A), we have fsgcl(h(A)) < h(clA).

Conversely, let for any A € I, fs’gcl(h(A)) < h(clA). Let U be
any fuzzy closed set in X. Then h(U) = h(clU) > fs?gcl(h(U)) =
h(U) is an fs?g-closed set in Y = h is an fs?g-closed function.

Theorem 4.16. If h: X — Y is an fs’g-closed bijective function,
then the following statements hold:

(i) for each fuzzy point z, in X and each fuzzy closed set U in X with
1.qU, there exists an fs’g-closed set V in Y with h(z,)¢V such that
V> h(U),

(ii) h=1(fs%gint(B)) > int(h~1(B)), for all B € I".

Proof (i). Let x, be a fuzzy point in X and U be any fuzzy closed set
in X with 2,qU = clU = h(z,)qh(clU) > fs’gcl(h(U)) (by Theorem
4.15) = h(x,)qV for some fs’g-closed set V in Y with V' > h(U).
(ii). Let B € IY and z, be any fuzzy point in X such that
7o € int(h~Y(B)). Then there exists a fuzzy open set U in X with
U < h7Y(B) such that x, € U. Then 1x \U > 1x \ h"Y(B) =
h(1x \U) > h(1x \ h~Y(B)) where h(1yx \ U) is an fs’g-closed set in
Y. Let V =1y \ h(1x \ U). Then V is an fs’g-open set in Y and
V = 1y\h(1X\U) S 1y\h(1x\h_1(B)) S 1y\(1y\B) =B (as
h is injective). Now U(z) > a = z,¢(1x \ U) = h(za)dh(1x \ U)
= h(zy) < Iy \h(1x \U) =V = h(z,) € V = fsPgint(V) <
fs%gint(B) = x, € h™1(fs%gint(B)). Since z, is taken arbitrarily,
int(h=1(B)) < h=Y(fs%gint(B)), for all B € IY.

Remark 4.17. Composition of two fs’g-closed (resp., fs’g-open)
functions need not be so, as it seen from the following example.

Example 4.18. Let X = {a,b}, 1 = {Ox,1x,A}, m» = {0x,1x},
73 = {0x, 1x, B} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4.
Then (X, 1), (X, 72) and (X, 73) are fts’s. Consider two identity func-
tions i; : (X, 7)) — (X, ) and iy : (X, 7) — (X,73). Clearly i,
and iy are fs’g-closed functions. Let iz = iz 04y : (X, 71) — (X, 73).
We claim that i3 is not fs’g-closed function. Now 1x \ A = A € 7¢.
is(Ix\A) =1x \A <1x\A € FSO(X,13). But cl,sint,,(1x \ A) =
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Ix\BZ1x\ A= 1x\ Aisnot an fs’g-closed set in (X, 73) = i3 is
not an fs’g-closed function.

Similarly we can show that i3 is not fs’g-open function though 4,
and 79 are so.

Theorem 4.19. If hy : X — Y is fuzzy closed (resp., fuzzy open)
function and hy : Y — Z is fs’g-closed (resp., fs’g-open) function,
then hyo hy : X — Z is fs?g-closed (resp., fs’g-open) function.

Proof. Obvious.

Now to establish the mutual relationship of fs?g-closed function
with the functions defined in [4], we have to recall the following defi-
nition first.

Definition 4.20 [4]. Let h: (X, 71) — (Y, 7) be a function. Then
h is called an fg-closed function if A(A) is fg-closed set in Y for every
Aerf.

Remark 4.21. fg-closed function and fs%g-closed function are in-
dependent concepts follow from the following examples.

Example 4.22. fs%g-closed functions don’t have to be fg-closed.

Let X = {a,b}, m = {0x,1x, A}, 2 = {Ox, 1x, B} where A(a) =
0.5, A(b) = 0.7,B(a) = 0.5,B(b) = 0.4. Then (X,7) and (X, )
are fts’s. Consider the identity function ¢ : (X, 1) — (X, 72). Now
Ix\Aerm,i(lx\A) =1x\A< B € FSO(X, ). As cl,sint,,(1x\
A) = 0x = 1x \ Ais fs?g-closed set in (X, 7;) and hence i is an
fs?g-closed function. But cl,(1x \ A) = 1x \ B £ B = 1x \ 4 is not
an fg-closed set in (X, 7). So i is not an fg-closed function.

Example 4.23. fg-closed functions don’t have to be fs?g-closed.
Let X = {a,b}, m = {0x,1x,A}, o = {0x,1x, B} where A(a) =
A(b) = 0.5, B(a) = 0.5, B(b) = 0.4. Then (X, 71) and (X, 73) are fts’s.
Consider the identity function i : (X,7) — (X, 7). Clearly i is an
fg-closed function. Now A € 77, i(A) = A < A € FSO(X, ). But
cl,(sint,,A) = 1x \ B £ A= Ais not an fs?g-closed set in (X, 7).
Hence i is not an fs’g-closed function.

5. fs?g-REGULAR, fs%g-NORMAL AND fs’g-COMPACT SPACES

In this section two new types of generalized version of fuzzy separa-
tion axioms are introduced and studied. Also a new type of generalized
version of fuzzy compactness is introduced.

Definition 5.1. An fts (X, 7) is said to be fs’g-regular space if for
any fuzzy point z; in X and each fs’g-closed set F'in X with z; & F,
there exist U,V € 7 such that z; e U, F <V and U 4V.
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Theorem 5.2. In an fts (X, 7), the following statements are equiv-

alent:

(i) X is fs?g-regular,

(ii) for each fuzzy point x, in X and any fs’g-open g-nbd U of z;,
there exists V' € 7 such that x; € V and ¢V < U,

(iii) for each fuzzy point z; in X and each fs’g-closed set A of X with
xy & A, there exists U € 7 with x; € U such that clU 4A.

Proof (i) = (ii). Let z; be a fuzzy point in X and U, any fs’g-

open ¢-nbd of z;. Then z,qU = U(x) +t > 1 = x; € 1x \ U which
is an fs’g-closed set in X. By (i), there exist V,W € 7 such that
2 € Vix \U < W and V gW. Then V < Ixy \ W = cV <
(ii) = (iii). Let a; be a fuzzy point in X and A, an fs?g-closed set in
X with z; ¢ A. Then A(x) <t = x;q(1x \ A) which being fsg-open
set in X is fs’g-open ¢-nbd of ;. So by (ii), there exists V € 7 such
that z; € V and clV < 1x \ A. Then clV gA.
(iii) = (i). Let a; be a fuzzy point in X and F be any fs’g-closed set
in X with z; € F. Then by (iii), there exists U € 7 such that x; € U
and clU 4F. Then F < 1x\ cU (=V, say). SoV € 7 and V 4U as
U 4(1x \ clU). Consequently, X is fsg-regular space.

Definition 5.3. An fts (X, 7) is called fs’g-normal space if for each
pair of fs?g-closed sets A, B in X with A 4B, there exist U,V € 7
such that A< U,B<V and U 4V.

Theorem 5.4. An fts (X, 7) is fs?g-normal space if and only if for
every fs?g-closed set F' and fs?g-open set G in X with F' < G, there
exists H € 7 such that ' < H < clH < (.

Proof. Let X be fs’g-normal space and let F' be fs%g-closed set
and G be fs’g-open set in X with F' < G. Then F 4(1x \ G) where
1x \ G is fs?g-closed set in X. By hypothesis, there exist H,T € 7
such that F < H)1x \G < T and H 4T. Then H < 1x\T < G.
Therefore, F < H <clH <cl(lx\T)=1x\T < G.

Conversely, let A, B be two fs’g-closed sets in X with A /gB.
Then A < 1x \ B. By hypothesis, there exists H € 7 such that
A<H<cH<1y\B= A<HB<1y\cH (=V, say). Then
Verandso B<V. Alsoas H f(1x \ clH), H 4V. Consequently,
X is fs?g-normal space.

Let us now recall the following definitions from [20, 25] for ready
references.

Definition 5.5. Let (X, 7) be an fts and A € IX. A collection U
of fuzzy sets in X is called a fuzzy cover of A if | JU > A [25]. If each
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member of U is fuzzy open (resp., fuzzy regular open, fs’g-open) in
X, then U is called a fuzzy open [25] (resp., fuzzy regular open [2],
fs?g-open) cover of A. If, in particular, A = 1y, we get the definition
of fuzzy cover of X as JU = 1x [20].

Definition 5.6. Let (X, 7) be an fts and A € I*X. Then a fuzzy
cover U of A (resp., of X) is said to have a finite subcover Uy if Uy is
a finite subcollection of U such that |JUy > A [25]. If, in particular
A= 1)(, we get UZ/{O = 1X [20]

Definition 5.7. Let (X, 7) be an fts and A € IX. Then A is called
fuzzy compact [20] (resp., fuzzy almost compact [21], fuzzy nearly
compact [28]) set if every fuzzy open (resp., fuzzy open, fuzzy regular
open) cover U of A has a finite subcollection U, such that (JUy > A
(resp., U cdU > A, JUy > A). If, in particular, A = 1x, we get

Ueld
the definition of fuzzy compact [20] (resp., fuzzy almost compact [21],
fuzzy nearly compact [22]) space as |JUy = 1x (resp., U clU = 1x,
Uelhy
UZ/{() = 1x)

Let us now introduce the following concept.

Definition 5.8. Let (X, 7) be an fts and A € I*. Then A is called
fs?g-compact if every fuzzy cover U of A by fs?g-open sets of X has
a finite subcover. If, in particular, A = 1x, we get the definition of
fs?g-compact space X.

Theorem 5.9. Every fs’g-closed set in an fs?g-compact space X
is fs%g-compact.

Proof. Let A(c I¥) be an fs?g-closed set in an fs?g-compact
space X. Let U be a fuzzy cover of A by fs’g-open sets of X. Then
V=U(1x \ A) is a fuzzy cover of X by fs?g-open sets of X. As
X is fs’g-compact space, V has a finite subcollection V, which also
covers X. If V, contains 1x \ A, we omit it and get a finite subcover
of A. Hence A is fs?g-compact set.

Next we recall the following two definitions from [27, 26] for ready
references.

Definition 5.10 [27]. An fts (X, 7) is called fuzzy regular space if
for each fuzzy point x; in X and each fuzzy closed set F' in X with
xy € F, there exist U,V € 7 such that z; e U, F <V and U 4V.

Definition 5.11 [26]. An fts (X, 7) is called fuzzy normal space if
for each pair of fuzzy closed sets A, B of X with A 4B, there exist
U,V € rsuch that AU B<Vand U 4V.
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Remark 5.12. It is clear from above discussion that (i) fs’g-
regular (resp., fs’g-normal, fs’g-compact) space is fuzzy regular
(resp., fuzzy normal, fuzzy compact) space, but the converses are not
true, in general, follow from the following example.

(ii) In fT,eg-space, fuzzy regularity (resp., fuzzy normality, fuzzy com-
pactness) implies fs’g-regularity (resp., fs’g-normality, fuzzy fs’g-
compactness).

Example 5.13. Let X = {a}, 7 = {0x, 1x}. Then (X, 7) is an fts.
Clearly (X, 7) is fuzzy regular space, fuzzy normal space and fuzzy
compact space. Here every fuzzy set is fs’g-open as well as fs’g-
closed set in (X, 7). Consider the fuzzy point a4 and the fuzzy set A
defined by A(a) = 0.3. Then agy ¢ A which is an fs’g-closed set in
X. But there do not exist U,V € 7 such that agy € U, A <V and
U 4V. So (X, 7) is not fs?g-regular space.

Similarly considering two fuzzy sets A, B defined by A(a) =
0.3, B(a) = 0.1. Then A and B are fs’g-closed sets in X with A 4B.
But there do not exist U,V € 7 such that A< U,B <V and U 4V.
So (X, 7) is not an fs’g-normal space.

Againlet U = {U,(a) : n € N} where Uy, (a) = -2, foralln € N of X.

=
Then U is an fs?g-open covering of X which has no finite subcovering.
Hence (X, 7) is not an fs’g-compact space.

6. fs?g-CONTINUOUS AND f5’g-IRRESOLUTE FUNCTIONS

In this section we first introduce two generalized version of func-
tions and then establish the mutual relationships of these functions
with the function defined in [4]. Afterwards the applications of these
two functions on fsg-regular, fs’g-normal and fs?g-compact spaces
are discussed here.

Now we first introduce the following concept.

Definition 6.1. A function 2 : X — Y is said to be fs’¢-
continuous function if A=1(V) is fs’g-closed set in X for every fuzzy
closed set V in Y.

Theorem 6.2. Let h: (X,7) — (Y,0) be a function. Then the
following statements are equivalent:
(i) his fs’g-continuous function,
(ii) for each fuzzy point z, in X and each fuzzy open nbd V' of h(z,)
in Y, there exists an fs’g-open nbd U of z,, in X such that h(U) <
(iii) h(fs%gcl(A)) < cl(h(A)), for all A € I,
(iv) fs?gel(h~Y(B)) < h™Y(cIB), for all B € IV.

Proof (i) = (ii). Let z, be a fuzzy point in X and V, any fuzzy

Y



THE CLASS OF FUZZY GENERALIZED CLOSED SETS OF TYPE s’ 19

open nbd of h(z,) in Y. Then z, € h~'(V) which is fs’g-open set in
X (by (i)). Let U = h=Y(V). Then h(U) = h(h~'(V)) < V.

(ii) = (i). Let A be any fuzzy open set in Y and z,, a fuzzy point in X
such that z, € h™'(A). Then h(z,) € A where A is a fuzzy open nbd
of h(z4) in Y. By (ii), there exists an fs’g-open nbd U of z,, in X such
that h(U) < A. Then x, € U < h™Y(A) = 2, € U = fs%gint(U) <
fs?gint(h=*(A)). Since z,, is taken arbitrarily and h=1(A) is the union
of all fuzzy points in h=1(A), h=1(A) < fs’gint(h=1(A)). So h=1(A)
is an fs?g-open set in X. Hence h is an fs’g-continuous function.

(i) = (iii). Let A € I*. Then c(h(A)) is a fuzzy closed
set in Y. y (i), h'(c l(h(A))) is fs’g-closed set in X.

Now A < h~ ((AS) § h=l(cl(h(A))) and so fs’gcl(A) <
Pt gl (i A(h(A)) = B (c(h(4) and so A(fsgel(A)) <
cl(h(A)).

(iii) = (i). Let V be a fuzzy closed set in Y. Put U = h=*(V). Then

U e I*X. By (iii), h(fs’gcl(U)) < cl(h(U)) = cl(h(h=Y(V))) < clV =
V implies that fs’gcl(U) < h™1(V) = U and so U is fs’g-closed set
in X Hence h is fs’g-continuous function.

(iii) = (iv). Let B € IV and A = h™'(B). Then A € [*. By (iii),
B(fs"gel(A)) < cl(h(A)). So A(fsgel(h" (B))) < cl(h(h"(B))) <
cIB. Then fs%gcl(h~Y(B)) < h~(clB).

(iv) = (iii). Let A € I¥, Then h(A) € IY. By
(iv), fs’gel(h=*(h(A))) < h7Y(cl(h(A))). Then fslgcl(A) <
fs%gel(h™' (h(A))) < h™H(cl(h(A))) = h(fs’gcl(A)) < cl(h(A)).

Remark 6.3. Composition of two fs’g-continuous functions need
not be so, as it seen from the following example.

Example 6.4. Let X = {a,b}, 7 = {0x,1x,B} o = {0x,1x},
73 = {0x, 1x, A} where A(a) = A(b) = 0.5, B(a) = 0.5, B(b) = 0.4.
Then (X,71), (X,72) and (X,73) are fts’s. Consider two identity
functions i; : (X,7) — (X, ) and iy : (X,72) — (X,73). Then
clearly 4; and iy are fs’g-continuous functions. Now A € 7¢. So
(ig Oil)_l(A) =A< Ac FSO(X,Tl) (as FSO(X,Tl) = {Ox, 1)(,U}
where B < U < 1x \ B). But ¢l sint;,(A) =1x \ B £ A. So A is
not an fs’g-closed set in (X, 7,) = iy 04, is not an fs’g-continuous
function.

Let us now recall the following definition from [20] for ready refer-
ences.

Definition 6.5 [20]. A function h : X — Y is called fuzzy contin-
uous function if A71(V) is fuzzy closed set in X for every fuzzy closed
set VinY.
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Remark 6.6. Since every fuzzy closed set is fs’g-closed set, it is
clear that fuzzy continuous function is fs’g-continuous function. But
the converse is not necessarily true, follows from the following exam-
ple.

Example 6.7. Let X = {a,b}, m = {0x,1x}, m» = {0x,1x, A}
where A(a) = A(b) = 0.5. Then (X, 7) and (X, 1) are fts’s. Con-
sider the identity function i : (X, 7) — (X, 7). Since every fuzzy
set in (X, 1) is fs?g-closed set in (X, 7), clearly i is fs’g-continuous
function. But A € 75, i"}(A) = A € 7¢ = i is not fuzzy continuous
function.

Theorem 6.8. If hy : X — Y is fs’g-continuous function and
hy 'Y — Z is fuzzy continuous function, then hy o hy : X — 7 is
fs%g-continuous function.

Proof. Obvious.

Theorem 6.9. If a bijective function h : X — Y is fs?g-continuous,
fuzzy open function from an fs’g-regular space X onto an fts Y, then
Y is fuzzy regular space.

Proof. Let y, be a fuzzy point in Y and F, a fuzzy closed set in
Y with y, € F. As h is bijective, there exists unique xz € X such
that h(z) = y. So h(zs) € F = x4 & h™H(F) where h™1(F) is fs%g-
closed set in X (as h is an fs?g-continuous function). As X is fs’g-
regular space, there exist U,V € 7 such that z, € U h"Y(F) <V
and Ug¢V. Then h(z,) € h(U), F = h(h™*(F)) (as h is bijec-
tive) < h(V) and h(U)¢h(V') where h(U) and h(V') are fuzzy open
sets in Y. (Indeed, h(U)qh(V) = there exists z € Y such that
(R(D))(2) + [R(W)](z) > 1 = UMh2)) + V(hz)) > 1 as h is
bijective = UqV, a contradiction). Hence Y is a fuzzy regular space.

In a similar manner we can state the following theorems easily the
proofs of which are same as that of Theorem 6.9.

Theorem 6.10. If a bijective function h : X — Y is fs’¢-
continuous, fuzzy open function from an fs’g-normal space X onto
an fts Y, then Y is fuzzy normal space.

Theorem 6.11. If a bijective function h : X — Y is fs%-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal), fT,g-space X onto an fts Y, then Y is fuzzy regular (resp.,
fuzzy normal) space.

Definition 6.12. A function h : X — Y is called fs?g-irresolute
function if h=1(U) is an fs’g-open set in X for every fsg-open set U
inY.

Theorem 6.13. A function h: X — Y is fs?g-irresolute function
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if and only if for each fuzzy point z, in X and each fs’g-open nbd V
in Y of h(x,), there exists an fs’g-open nbd U in X of x, such that
h(U) < V.

Proof. The proof is same as that of Theorem 6.2 (i)<(ii).

Now we state the following two theorems easily the proofs of which
are similar to that of Theorem 6.9.

Theorem 6.14. If a bijective function h : X — Y is fs?g-irresolute,
fuzzy open function from an fs’g-regular (resp., fs’g-normal) space
X onto an fts Y, then Y is fs?g-regular (resp., fs?g-normal) space.

Theorem 6.15. If a bijective function  : X — Y is fs’g-irresolute,
fuzzy open function from an fs’g-regular (resp., fs’g-normal) space
X onto an fts Y, then Y is fuzzy regular (resp., fuzzy normal) space.

Theorem 6.16. If a bijective function h : X — Y is fs’g-irresolute,
fuzzy open function from a fuzzy regular (resp., fuzzy normal), fT,6g-
space X onto an fts Y, then Y is fuzzy regular (resp., fuzzy normal)
space.

Theorem 6.17. Let h : X — Y be an fs’g-continuous function
from an fts X onto an fts Y and A(€ I*) be an fs’g-compact set in
X. Then h(A) is a fuzzy compact (resp., fuzzy almost compact, fuzzy
nearly compact) set in Y.

Proof. Let U = {U, : o € A} be a fuzzy cover of h(A)
by fuzzy open (resp., fuzzy open, fuzzy regular open) sets of Y.
Then h(A) < UUa Then A < hil(UUa) = Uhil(Ua). Then

a€A a€A acl
V ={h"YU,) : @ € A} is a fuzzy cover of A by fs’g-open sets of X
as h is an fs’g-continuous function. As A is fsg-compact set in X,
there exists a finite subcollection A of A such that A < U h=1(U,).
aclNg
So h(A) < h( U Y (U,)) < U U,. Hence h(A) is fuzzy compact
a€lg a€hg
(resp., fuzzy almost compact, fuzzy nearly compact) set in Y.

Since fuzzy open set is fs?g-open, we can state the following theo-
rems easily the proofs of which are same as that of Theorem 6.17.

Theorem 6.18. Let h : X — Y be an fs?g-irresolute function
from an fts X onto an fts Y and A(€ IX) be an fs?g-compact set in
X. Then h(A) is fs’g-compact (resp., fuzzy compact, fuzzy almost
compact, fuzzy nearly compact) set in Y.

Theorem 6.19. Let h : X — Y be an fs?g-continuous function
from an fs?g-compact space X onto an fts Y . Then Y is fuzzy com-
pact (resp., fuzzy almost compact, fuzzy nearly compact) space.
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Theorem 6.20. Let b : X — Y be an fs?g-irresolute function from
an fs’g-compact space X onto an fts Y . Then Y is fs’g-compact
(resp., fuzzy compact, fuzzy almost compact, fuzzy nearly compact)
space.

Theorem 6.21. Let h : X — Y be an fs’g-continuous function
from a fuzzy compact, fT,g-space X onto an fts Y . Then Y is fuzzy
compact (resp., fuzzy almost compact, fuzzy nearly compact) space.

Theorem 6.22. Let h : X — Y be an fs’g-irresolute function
from a fuzzy compact, fT.0g-space X onto an fts Y . Then Y is fsg-
compact (resp., fuzzy compact, fuzzy almost compact, fuzzy nearly
compact) space.

Remark 6.23. It is clear from definitions that (i) fs’g-irresolute
function is fs’g-continuous, but the converse may not be true, as it
seen from the following example.

Also (ii) fuzzy continuity and fs’g-irresoluteness are independent con-
cepts follow from the following examples.
(iii) Composition of two fs?g-irresolute functions is also so.

Example 6.24. Fuzzy continuous functions, fs’g-continuous func-

tions don’t have to be fgs’-irresolute.
Let X = {a,b}, m = {Ox,1x,A}, m» = {0x,1x} where A(a) =
0.5,A(b) = 0.4. Then (X,7) and (X, 72) are fts’s. Consider the
identity function i : (X, 71) — (X, 7). Clearly i is fs’g-continuous
as well as fuzzy continuous function. Now every fuzzy set in (X, 1)
is fs’g-closed set in (X.73). Consider the fuzzy set C defined by
C(a) = C(b) = 0.5. Then C is fs’g-closed set in (X, 7). Now
iTY(C)=C < C e FSO(X,n). But cl,,sint,C =1x \ALC = C
is not an fs’g-closed set in (X, 1) = i is not an fs’g-irresolute func-
tion.

Example 6.25. fs?g-irresoluteness does not imply fuzzy continu-
ity
Let X = {a,b}, m = {0x,1x}, » = {0x, 1x, A} where A(a) = A(b) =
0.5. Then (X, 7) and (X, 73) are fts’s. Consider the identity function
i:(X,m) — (X, 7). Since every fuzzy set in (X, 1) is fs’g-closed
set in (X, 1), clearly i is fs?g-irresolute function. Also i is not fuzzy
continuous function as A € 75,1 (A) = A & 7.

Theorem 6.26. Let h : X — Y be an fs’g-continuous function
where Y is an fT,0g-space. Then h is fs’g-irresolute function.

Proof. Obvious.

Theorem 6.27. If hy : X — Y is fs’g-irresolute function and
hy 1Y — Z is fs?g-continuous function, then hy o hy : X — Z is an
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fs%g-continuous function.

Proof. Obvious.

Let us first recall the definition of the function defined in [4].

Definition 6.28 [4]. Let h: (X, 7) — (Y, 7) be a function. Then
h is called fg-continuous function if A=1(V) is fg-closed set in X for
every V € 75.

Remark 6.29. It is clear from definitions that fg-continuity and
fs%s-continuity are independent concepts follow from the following ex-
amples.

Example 6.30. fs’g-continuity does not imply fg-continuity
Let X = {a,b}, m = {0x,1x,B}, m» = {0x,1x, A} where A(a) =
0.5,A(b) = 0.7,B(a) = 0.5,B(b) = 0.4. Then (X,7) and (X, 7)
are fts’s. Consider the identity function ¢ : (X, 1) — (X, 7). Now
Ix\A € 7 i'(1x \A) = 1x \A < B € FSO(X,n) (also
B € 7). Then cl,sint;, (1x \ A) = 0x < B implies that 1x \ A
is fs’g-closed set in (X, 7) and so i is fs’g-continuous function. But
c(Ix \A) =1x \ B £ B. Then 1x \ A is not an fg-closed set in
(X, 7). Hence i is not an fg-continuous function.

Example 6.31. fg-continuity does not imply fs’g-continuity
Let X = {a,b}, m = {0x,1x,A}, 2 = {Ox, 1x, B} where A(a) =
0.5, A(b) = 0.4, B(a) = B(b) = 0.5. Then (X, 7) and (X, ) are fts’s.
Consider the identity function i : (X, 77) — (X, 7). Now B € 73,
i"'(B) = B < B e FSO(X,7). But cl,(sint,B) = 1x \ A £ B.
Then B is not fs’g-closed set in (X, 71). So i is not an fs’g-continuous
function. Again 1x is the only fuzzy open set in (X, ;) containing B
and so ¢ fg-continuous function.

Remark 6.32. Let h : X — Y be a function where X is an
fT.og-space. Then if h is an fs?g-continuous function, then A is an
fg-continuous function.

7. fs%g-T-SPACE

A new type of fuzzy Ts-space is introduced in this section. Also a
strong form of fs’g-continuity is introduced and studied. Lastly the
applications of this newly defined function and the functions defined
earlier in this paper are established.

We first recall the definition and theorem from [27, 28] for ready
references.

Definition 7.1 [27]. An fts (X, 7) is called fuzzy Ts-space if for
any two distinct fuzzy points z, and ysz; when = # y, there exist
fuzzy open sets Uy, Us, Vi, Vs, such that z, € Ui, ysqVi,Ur Vi and
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2aqUsa,ypg € Vo, Uy fjVa; when z = y and a < (3 (say), there exist fuzzy
open sets U and V in X such that x, € U,ypqV and U 4V

Theorem 7.2 [28]. An fts (X, 7) is fuzzy Ty-space if and only if for
any two distinct fuzzy points z, and yz in X; when x # y, there exist
fuzzy open sets U,V in X such that z,qU, ysqV and U 4V; when
r =y and o < 8 (say), z, has a fuzzy open nbd U and yz has a fuzzy
open ¢g-nbd V such that U 4V.

Now we introduce the following concept.

Definition 7.3. An fts (X, 7) is called fs’g-Ty-space if for any two
distinct fuzzy points z, and yg in X; when z # y, there exist fs%g-
open sets U,V in X such that x,qU, yzqV and U A4V; when z =y
and o < 3 (say), x4 has an fs?g-open nbd U and ys has an fs’g-open
g-nbd V such that U 4V.

Theorem 7.4. If an injective function h : X — Y is fs%-
continuous function from an fts X onto a fuzzy Ts-space Y, then X is
fs%g-Ty-space.

Proof. Let z, and yg be two distinct fuzzy points in X. Then
h(za) (= za, say) and h(yg) (= wg, say) are two distinct fuzzy points
inY.

Case 1. Suppose = # y. Then z # w. Since Y is fuzzy T,-space, there
exist fuzzy open sets U,V in Y such that z,qU,wsqV and U /V.
As h is fs?g-continuous function, h=*(U) and h=1(V) are fs’g-open
sets in X with z,qh ™ (U),ysqh™" (V) and h=Y(U) 4h~ (V) [Indeed,
20U = U(R)+a>1=Ux)+a>1= [ (D)) +a>1=
Toqh ™ (U). Again, h™(U)gh™' (V) = there exists t € X such that
R=Y O] (@#) + [P E(V)](t) > 1 = U(h(t)) + V(h(t)) > 1 = UqV, a
contradiction)].

Case II. Suppose ¢ = y and a < [ (say). Then z = w and
a < B. Since Y is fuzzy Th-space, there exist a fuzzy open nbd
U of z, and a fuzzy open ¢-nbd V of ws such that U V. Then
Ui) > a = Y 0)|(x) > a = 2, € YU),ysqh (V) and
h=Y(U) 4h=(V) where h=1(U) and h=1(V) are fs’g-open sets in X
as h is fs’g-continuous function. Consequently, X is fs?g-Ts-space.

Similarly we can state the following theorems easily the proofs of
which are similar to that of Theorem 7.4.

Theorem 7.5. If a bijective function h : X — Y is fs?g-irresolute
function from an fts X onto an fs?g-Th-space Y, then X is fs%g-Ty-
space.

Theorem 7.6. If a bijective function h : X — Y is fs?g-continuous
function from an fT.g-space X onto a fuzzy T,-space Y, then X is
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fuzzy Ts-space.

Theorem 7.7. If a bijective function h : X — Y is fs?g-irresolute
function from an fT,g-space X onto an fs’g-Thr-space Y, then X is
fuzzy Ts-space.

Theorem 7.8. If a bijective function h : X — Y is fs’g-open func-
tion from a fuzzy Th-space X onto an fts Y, then Y is fs?g-Th-space.

Theorem 7.9. If a bijective function h : X — Y is fs’g-open
function from a fuzzy Ts-space X onto an fTg-space Y, then Y is
fuzzy T-space.

Now we introduce the strong form of fs’g-continuous function.

Definition 7.10. A function h : X — Y is called strongly fs’g-
continuous function if A~1(V) is fuzzy closed set in X for every fs’g-
closed set V in Y.

Theorem 7.11. A function h : X — Y is strongly fs’g-continuous
function if and only if for each fuzzy point x, in X and each fs?g-open
nbd V in Y of h(z,), there exists a fuzzy open nbd U in X of z, such
that h(U) < V.

Proof. The proof is similar to that of Theorem 6.2 (i)<(ii).

Remark 7.12. (i) Composition of two strongly fs’g-continuous
functions is also so.

(ii) Strongly fs?g-continuity implies fuzzy continuity, fs’g-continuity
and fs?g-irresoluteness, but the reverse implications are not necessar-
ily true, follow from the following examples.

Example 7.13. fs?g-continuity, fs’g-irresoluteness do not imply
strongly fs?g-continuity
Let X = {a,b}, m = {Ox,1x}, 2 = {0x,1x, A} where A(a) =
0.5,A(b) = 0.4. Then (X,7) and (X, ) are fts’s. Consider the
identity function ¢ : (X,71) — (X, 7). As every fuzzy set in
(X, 1) is fs’g-closed set in (X, 1), clearly i is fs’g-continuous as
well as fs?g-irresolute function. Now consider the fuzzy set B de-
fined by B(a) = B(b) = 04. As B < A € FSO(X,m),we have
cl,(sint,,B) = 0x < A, clearly B is fs’g-closed set in (X, 7). But
i"Y(B) = B ¢ 7¢ = i is not a strongly fs’g-continuous function.

Example 7.14. Fuzzy continuity does not imply strongly fs’g-
continuity
Let X ={a,b}, m = {0x,1x, A}, 7o = {Ox, 1x} where A(a) = A(b) =
0.5. Then (X, 7) and (X, 7») are fts’s. Consider the identity function
i:(X,m) = (X, 7). Clearly i is fuzzy continuous function. Now
every fuzzy set in (X, 1) is fs’g-closed set in (X, 7). Consider the
fuzzy set B defined by B(a) = B(b) = 0.4. Then B is fs’g-closed set
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in (X, 7). Buti"}(B) = B € 7{ = i is not a strongly fs’g-continuous
function.

Theorem 7.15. If hy : X — Y is strongly fs’g-continuous function
and hy : Y — Z is fs?g-continuous function, then hy o hy : X — Z is
fuzzy continuous function.

Proof. Obvious.

Now we can state the following theorems easily the proofs of which
are similar to that of Theorem 6.9, Theorem 6.17 and Theorem 7.4.

Theorem 7.16. If a bijective function h : X — Y is strongly fs’g-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y, then Y is fs’g-regular (resp., fs’g-
normal) space.

Theorem 7.17. If a bijective function h : X — Y is strongly fs?g-
continuous, fuzzy open function from a fuzzy regular (resp., fuzzy
normal) space X onto an fts Y, then Y is fuzzy regular (resp., fuzzy
normal) space.

Theorem 7.18. If a bijective function h : X — Y is strongly fs’g-
continuous function from an fts X onto an fs’g-Th-space Y, then X
is fuzzy Tsr-space.

Theorem 7.19. If a bijective function h : X — Y is strongly fs’g-
continuous function from a fuzzy compact space X onto an fts Y, then
Y is fs%g-compact (resp., fuzzy compact, fuzzy almost compact, fuzzy
nearly compact) space.

Remark 7.20. Clearly fuzzy Th-space is fs?g-Th-space, but the
converse is not necessarily true, follows from the following example.

Example 7.21. Let X = {a,b}, 7 = {Ox,1x}. Then (X,7) is an
fts. Clearly (X, 7) is not a fuzzy Ty-space. Here every fuzzy set in
(X,7) is fs?g-open set in (X, 7). Clearly X is fs?g-Ty-space.
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