
“Vasile Alecsandri” University of Bacău
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APPLICATIONS OF ZORN’S LEMMA TO PRIMALS
AND GRILLS

SHYAMAPADA MODAK, MONOJ KUMAR DAS AND CHHAPIKUL MIAH

Abstract. We investigate various connections between the no-
tions of filter, ideal, grill and primal in topological spaces, then we
characterize Hausdorff spaces, compact spaces and continuity of func-
tions via limit points and cluster points of grills and primals. As a
conclusion on our study on maximal primals, we provide a new proof
of Tychonoff theorem.

1. Introduction and Preliminaries

The study of filters has two sides one is related to Zorn’s Lemma
[3] and other sides is convergent of Filters. However joint studies
Zorn’s Lemma as well as convergence (see [10, 11, 17]) in front of
filter are also a remarkable part. The mathematical structures filter
[8, 9, 10, 11, 12, 17], grill [12, 13, 14, 15, 16], ideal [5] and primal [1]
are related to each other. Their related studied were established in
[2, 7, 12, 14, 17].
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In this paper, we consider the further study of primals and grills in
aspect of their convergence and as the application of Zorn’s Lemma.
Characterizations of Hausdorff space and Compact space through the
convergence of primal, ultraprimal, grill and ultragrill are also an im-
portant phenomena. Throughout this paper, we denote ‘iff’ as if and
only if.

Definition 1. A collection P of subsets of a nonempty set Z is said
to be a primal [1] on Z if it satisfies: (i) Z /∈ P, (ii) I ∈ P and S ⊆ I
implies S ∈ P and (iii) I∩S ∈ P implies I ∈ P or S ∈ P. Equivalently,
a collection P of subsets of a nonempty set Z is said to be a primal on
Z if it satisfies: (i) Z /∈ P, (ii) S /∈ P and S ⊆ I implies I /∈ P and
(iii) I /∈ P and S /∈ P implies I ∩ S /∈ P.

Definition 2. A collection I of subsets of a nonempty set Z is called
an ideal [5] on Z if I is closed under hereditary property and finite
additivity property. If Z /∈ I, then I is called proper ideal. A proper
ideal I is called an admissible ideal [4] if I contains every singleton.

Definition 3. A collection G ⊆ 2Z on a set Z is said to be a grill on
Z if (i) ∅ /∈ G; (ii) A ∈ G and A ⊆ B implies B ∈ G; (iii) A∪B ∈ G
implies A ∈ G or B ∈ G. In this manuscript, G denotes the grill.

Definition 4. A collection F ⊆ 2Z on a set Z is said to be a filter [6]
on Z if (i) ∅ /∈ F ; (ii) A ∈ F and A ⊆ B implies B ∈ F; (iii) A ∈ F
and B ∈ F implies A∩B ∈ F. In this manuscript, F denotes the filter.

Definition 5. A collection F′ ⊆ 2Z on a set Z ̸= ∅ is said
to be a filter base (or base) [6] if the collection {F ∈ P(Z) :
F contains a member of F′} forms a filter on Z.

Definition 6. Let F be a filter on Z. Then the subfamily S of F is
said to be a sub-base [6] for F if the family of all finite intersection of
members of S is a base for F.

Definition 7. Let F1 and F2 be two filters on Z with F1 ⊂ F2. Then
F2 is called subfilter [6] if F1 converges to some point in Z implies F2

so.

Definition 8. Let Z be a set endowed with a topology l is called a
topological space and it is written (Z, l) (or simply Z when there is
no scope for misunderstanding). Further, if P is a primal on Z, then
(Z, l,P) is called a primal topological space (or simply PTS). Conse-
quently c(A) denotes the closure of the subset A of Z in the topological
space (Z, l).
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Definition 9. The collection PZ of all primals on Z forms a partially
ordered set with respect to ⊆. Furthermore, every chain in (PZ ,⊆)
has an upper bound. Thus, by Zorn’s Lemma, (PZ ,⊆) has an maximal
element. This maximal element is called ultraprimal.

F stands for a filter; U stands for a ultraprimal; FU stands for a filter
obtained from the primal U; PF stands for a primal obtained from the
filter F. 2Z denotes the set of all subsets of the set Z.
A collection ⟳Z of all grills on Z forms a partially ordered set with

respect to ⊆. Furthermore, every chain in (⟳Z ,⊆) has an upper
bound. Thus, by Zorn’s Lemma, (⟳Z ,⊆) has an maximal element.
This maximal element is called ultragrill. In this manuscript V de-
notes the ultragrill.

Before entering the next section, we say that the σ-algebra of Borel
sets [18] does not form a primal. Later we discuss why the σ-algebra
does not form a primal.

2. Primals with Filters

In this section, we shall investigate more results of primals (resp.
grills). Through this section, we also shall discuss about the conver-
gence of primals (resp. grills) and its various properties. Continuity
is also a part of this section.

Lemma 10. Suppose Z is a non-empty set and S ⊆ 2Z has the
finite intersection property. Then for F := {A ⊇ S1 ∩ S2 ∩ · · · ∩
Sl| S1, S2, · · · , Sl ∈ S, l is arbitrary},

(1) P := {A ∈ 2Z | A /∈ F} is a primal on Z.
(2) G := {A ∈ 2Z | Z \ A /∈ F} is a grill on Z.

Proof. 1. As Z ∈ F, then Z /∈ P. Let A ⊆ B ∈ P. Then B /∈ F. If
possible suppose S1, S2, · · · , Sl ∈ S such that S1 ∩ S2 ∩ · · · ∩ Sl ⊂ A
implies S1∩S2∩ · · · ∩Sl ⊂ B and hence B ∈ F, a contradiction. Thus
A ∈ P.
Let A,B /∈ P. Then, A,B ∈ F. Thus, there exists S1, S2, · · · , Sl ∈ S
and S ′

1, S
′
2, · · · , S ′

l ∈ S such that A ⊇ S1 ∩ S2 ∩ · · · ∩ Sl and B ⊇
S ′
1∩S ′

2∩· · ·∩S ′
l. This implies, A∩B ⊇ S1∩S2∩· · ·∩Sl∩S ′

1∩S ′
2∩· · ·∩S ′

l

and hence A ∩B ∈ F. Thus, A ∩B /∈ P. Contrapositively, A ∩B ∈ P
implies either A ∈ P or B ∈ P.

Lemma 11. [7] Let P be a primal and G be a grill on a set Z. Then

(1) F := {A ⊆ Z| A /∈ P} is a filter on Z.
(2) F′ := {A ⊆ Z| Z \ A /∈ G} is a filter on Z.
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One may denote these by FP and FG called these by filter associated
with the primal P and filter associated with the primal P, respectively.

Lemma 12. [7] Let F be filter on a set Z. Then

(1) PF = {A ⊆ Z| A /∈ F} is a primal on Z.
(2) GF = {A ⊆ Z| Z \ A /∈ F} is a grill on Z.

Note that, the duality between ideals and filters, as well as the dual-
ity between primal and grills could be made. Thus, the complements
of the sets forming one family belonging to a one of the category form
a family belonging to the dual category. A filter can be derived by an
ideal on a set, analogous to Lemma 12 and conversely and the related
research has been elaborately studied by Matejdes in [7]. However, in
[7] the author used this converse but he did not mention that every
proper ideal gives a filter.

Lemma 13. Let P be a primal on a set Z. Then D := {t × P | P /∈
P and t ∈ P}. For t×H, s× L ∈ D, we define

t×H ≥ s× L iff H ⊆ L.
Then (D,≥) is a directed set.

Proof. Let t ×H, s × L ∈ D and t ×H ≥ s × L ∈ D. Then H ⊆ L,
H ∩L /∈ P. Thus H ∩L ̸= ∅. Pick z ∈ H ∩L. Then z× (H ∩L) ∈ D
and z × (H ∩ L) ≥ t×H and z × (H ∩ L) ≥ s× L.

In this case, we always get a net S : D −→ Z in Z by the rule
S(t×H) = t.

Corollary 14. Let G be a grill on a set Z. Then D := {t×G| Z\G /∈
G and t ∈ (Z \G)}. For t×H, s× L ∈ D, we define
t×H ≥ s× L iff H ⊆ L.
Then (D,≥) is a directed set.

It is noteworthy that a net can be derived from an ideal on a set,
and the related research has been explored by the authors Modak et
al. in [17].

Theorem 15. Let S : D −→ Z be a net, and for every m ∈ D, let
Bm := {S(n)| n ∈ D and n ≥ m}. Then

(1) IS := {A| A ⊆ Z \Bm for some m ∈ D} is a proper ideal on
Z [17].

(2) PS := {A| Z \ A /∈ IS} is a primal on Z.
(3) GS := {A| A /∈ IS} is a grill on Z.

Example 16. Let (Z, l) be a topological space and z ∈ Z. Then
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(1) PNz := {A ⊆ Z| A /∈ Nz} is a primal on Z.
(2) GNz := {A ⊆ Z| Z \ A /∈ Nz} is a grill on Z.

where Nz denotes the collection of all neighbourhoods of z.

Definition 17. If P1 (resp. G1) and P2 (resp. G2) are primals (resp.
grills) on a set Z such that P1 ⊆ P2 (resp. G1 ⊆ G2) , then we call P2

(resp. G2 ) a refinement of P1 (resp. G1 ). We say that P2 (resp. G2

) is finer than P1 (resp. G1).

Definition 18. Let (Z, l) be a topological space. A primal P (resp. G)
on Z converges to a point z ∈ Z if PNz (resp. GNz) is a refinement of
P (resp. G). We say that z is a limit point of P (resp. G).

In this connection, AP (resp. AG) denotes the set of all limits of P
(resp. G) on the topological space (Z, l).

Definition 19. Let (Z, l) be a topological space. A point z ∈ Z is
a cluster point of a primal P (resp. grill P) if z ∈

⋂
{c(P )| P /∈ P}

(resp. z ∈
⋂
{c(G)| Z \G /∈ G}).

Evidently, every limit point of a primal (resp. grill) is a cluster point
of that primal (resp. grill).

Lemma 20. Let (Z, l) be a topological space. Then the primal P on
Z converges to p ∈ Z iff FP converges to p.

Proof. Given that Np ⫅̸ P. This implies that Np ⊆ FP.

Lemma 21. Let (Z, l) be a topological space. Then the filter F on Z
converges to p ∈ Z iff PF converges to p.

Lemma 22. Let (Z, l) be a topological space. Then p ∈ Z is a cluster
point of a primal P iff p is a cluster point of the negation filter FP.

Lemma 23. Let (Z, l) be a topological space. Then p ∈ Z is a cluster
point of a filter F iff p is a cluster point of the negation primal PF.

Lemma 24. Let (Z, l) be a topological space and A ⊆ Z. Then z ∈
c(A) iff one of the condition holds

(1) there exists a primal P on Z such that A /∈ P and z ∈ AP.
(2) there exists a grill G on Z such that Z \ A /∈ G and z ∈ AG.
(3) z ∈ c(A) iff there exists a primal P on Z such that A /∈ P and

P Z−→ p.

Proof. 1. Given that p ∈ c(A). Define P := {B ⊆ Z| B∩N = ∅, N ∈
Np}. Since A ∩N ̸= ∅, A /∈ P. It is obvious that P is a primal on Z

and Nx ⫅̸ P. Thus P Z−→ p.
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Conversely suppose a primal P on Z such that A /∈ P and P Z−→ p.
Then for N ∈ Nx, A∩N ̸= ∅, otherwise A∩N ∈ P implies N ∈ P, a
contradiction.

Proposition 25 ([6]). Let S be a family of subsets of a set Z. Then
there exists a filter on Z having S as a sub-base iff S has the finite
intersection property.

Theorem 26. A topological space (Z, l) is Hausdorff iff no primal on
Z has more than one limit.

Proof. Suppose that (Z, l) is Hausdorff. Let P be a primal that con-
verges more than one limit say p and q where p ̸= q. Since the primal
P converges to p and q, then by Lemma 20, the filter FP converges to
p and q. Then, Np, Nq ∈ FP for each Np ∈ Np and Nq ∈ Nq. This
implies, Np ∩ Nq ∈ FP for each Np ∈ Np and Nq ∈ Nq and hence
Np ∩ Nq ̸= ∅ for each Np ∈ Np and Nq ∈ Nq which contradicts the
fact that (Z, l) is Hausdorff. Thus, we must have p = q.
Conversely, assume that no primal on Z has more than one limit. If
(Z, l) is not Hausdorff, then there exist p, q ∈ Z with p ̸= q such that
Np ∩ Nq ̸= ∅ for each Np ∈ Np and Nq ∈ Nq. From this, it follows
that the family Np ∪ Nq has the finite intersection property. So by
Proposition 25, there exists a filter F on Z containing Np ∪ Nq. Evi-
dently, the filter F converges both to p and q. Hence, by Lemma 21,
the primal PF converges both to p and q which contradicts the given
condition. So (Z, l) is Hausdorff.

Corollary 27. A topological space (Z, l) is Hausdorff iff no grill on
Z has more than one limit.

Theorem 28. A topological space (Z, l) is Hausdorff iff a primal P
on Z converges to z implies z is the only cluster point of P.

Proof. Let (Z, l) be Hausdorff and the primal P on Z converges to z.
Then, z is a limit point of P and hence z is a cluster point of P. Assume
that z1 is another cluster point of P. Then, z, z1 ∈

⋂
{c(P )| P /∈ P}.

This implies, z, z1 ∈ c(P ) for all P /∈ P and hence for each Nz ∈ Nz

and Nz1 ∈ Nz1 such that Nz ∩ P ̸= ∅ and Nz1 ∩ P ̸= ∅ for all P /∈ P.
Thus, (Nz ∩Nz1) ∩ P = (Nz ∩ P ) ∩ (Nz1 ∩ P ) ̸= ∅ for each Nz ∈ Nz

and Nz1 ∈ Nz1 . This implies, Nz ∩ Nz1 ̸= ∅ for each Nz ∈ Nz and
Nz1 ∈ Nz1 which contradicts the fact that (Z, l) is Hausdorff. Hence,
z is the only cluster point of P.
Conversely, assume that a primal P on Z converges to z implies z is
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the only cluster point of P. We have to show that (Z, l) is Hausdorff.
If possible let (Z, l) is not Hausdorff. Then, by Theorem 26, there
exists a primal on Z has more than one limit. Also, since every limit
points are cluster point, then there exists a primal on Z has more than
one cluster point which contradicts the given condition. So (Z, l) is
Hausdorff.

Theorem 29. A topological space (Z, l) is Hausdorff iff a grill G on
Z converges to z implies z is the only cluster point of G.

Theorem 30 ([6]). For a topological space (Z, l), the following state-
ments are equivalent:

(1) Z is compact;
(2) Every filter on Z has a cluster point in Z;
(3) Every filter on Z has a convergent subfilter.

Theorem 31. For a topological space (Z, l), the following statements
are equivalent:

(1) Z is compact;
(2) Every primal (resp. grill) on Z has a cluster point in Z;
(3) Every primal (resp. grill) on Z has a convergent refinement

primal (resp. grill).

Proof. 1. ⇒ 2.: Assume that Z is compact. We have to show that
every primal on Z has a cluster point in Z. If possible, let there exists
a primal P on Z which has no cluster point. Then by Lemma 22, the
negation filter FP has no cluster point which contradicts the Theorem
30. Hence our assumption is wrong. Thus Every primal on Z has a
cluster point in Z.
2. ⇒ 3.: Assume that every primal on Z has a cluster point in Z.
We have to show that every primal on Z has a convergent refinement
primal. If possible let there exists a primal P on Z which has no
convergent refinement primal. This implies that the negation filter FP
has no convergent refinement negation filter. Thus, there exists a filter
on Z which has no convergent subfilter which contradicts the Theorem
30. Hence our assumption is wrong. Thus, Every primal on Z has a
convergent refinement primal.
3. ⇒ 1.: Assume that every primal on Z has a convergent refinement
primal. We have to show that Z is compact. If possible, let Z is
not compact. Then by Theorem Theorem 30, there exists filter F
on Z which has no convergent subfilter. Thus, the primal PF has no
convergent refinement primal which contradicts our given condition.
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Thus, Z is compact.
This completes the proof.

Theorem 32. Let ℏ : Z → Z ′ be a bijective mapping. Then,

(1) For a primal P on Z, then ℏ(P) := {ℏ(P )| P ∈ P} is a primal
on Z ′ [1].

(2) For a grill G on Z, ℏ(G) := {ℏ(G)| G ∈ G} is also a grill on
Z ′.

Proof. (i) ∅ = ℏ(∅) /∈ ℏ(G) as ∅ /∈ G and ∅ ⊂ Z.
(ii) Let P,Q ⊂ Z ′ with P ∈ ℏ(G) and P ⊂ Q. Then, there exists
A ⊂ Z with A ∈ G such that ℏ(A) = P . This implies ℏ(A) ⊂ Q and
hence {ℏ(x)| x ∈ A} ⊂ Q. Let S = {x ∈ X| ℏ(x) ∈ Q}. This implies
A ⊂ S. Then, ℏ(S) = {ℏ(s)|s ∈ S} = Q and A ⊂ S. This implies,
S ∈ G since G is a grill and hence ℏ(S) ∈ ℏ(G). Thus, Q ∈ ℏ(G).
(iii) Let P,Q /∈ ℏ(G). Then, there does not exist A,B ⊂ Z with
A,B ∈ G such that ℏ(A) = P and ℏ(B) = Q. Thus, A,B /∈ G implies
A ∪ B /∈ G. So, ℏ(A ∪ B) /∈ ℏ(G) and hence ℏ(A) ∪ ℏ(B) /∈ ℏ(G)
implies P ∪Q /∈ ℏ(G). Contrapositively, P ∪Q ∈ ℏ(G) implies either
P ∈ ℏ(G) or Q ∈ ℏ(G).
Hence ℏ(G) := {ℏ(G)| G ∈ G} is a grill on Z ′. This completes the
proof.

Theorem 33. Let (Z1, l1), (Z2, l2) be two topological spaces, z ∈ Z1,
and ℏ : Z1 → Z2 be a function. Then, following statements are hold.

(1) ℏ is continuous at z iff whenever a primal P converges to z,
the image primal ℏ(P) converges to ℏ(z).

(2) ℏ is continuous at z iff whenever a grill G converges to z, the
image grill ℏ(G) converges to ℏ(z).

Proof. Suppose ℏ is continuous at z and P converges to z. Let N
be any neighbourhood of ℏ(z) in Z2. By continuity of P, ℏ−1(N) is a
neighbourhood of z in Z2. By the condition, ℏ−1(N) /∈ P. This implies
that N /∈ ℏ(P). So, ℏ(P) converges to ℏ(z).

Conversely suppose that the condition holds. If possible suppose
that ℏ is not continuous at z. Then there exists a neighbourhood N of
ℏ(z) such that ℏ−1(N) is not a neighbourhood of z in Z1. This means
that every neighbourhood of z in Z1 intersects the complement Z1 \
ℏ−1(N) (if M∩(Z1\ℏ−1(N)) = ∅, then M ⊆ ℏ−1(N) a contradiction).
Now S := Nz ∪ {X \ ℏ−1(N)} has the finite intersection prop-

erty. Then by Lemma 10 P := {A ∈ 2Z | A ⫆̸ S1 ∩ S2 ∩ · · · ∩
Sl, S1, S2, · · · , Sl ∈ S, l is arbitrary} is a primal on Z1. By the
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construction of the primal P, Nz ⫅̸ P, thus P converges to z. But ℏ(P)
does not converge to ℏ(z). Indeed since Z1 \ ℏ−1(N) /∈ ℏ(P) implies
ℏ(Z1 \ℏ−1(N)) /∈ ℏ(P). But Z2 \N contains ℏ(Z1 \ℏ−1(N)) and hence
Z2 \N /∈ ℏ(P). Thus N ∈ ℏ(P), contradiction as P converges to z.

Theorem 34. Let Z be the topological product of an indexed family of
topological spaces {Zi| i ∈ I}. Let P be a primal on Z and z ∈ Z. Then
P converges to z in Z iff for each i ∈ I, the primal πi(P) converges to
πi(z) in Zi.

Proof. The necessity of the condition follows from Theorem 33.
Sufficiency: Let N ∈ Nz. Then N contains a basic open set V

containing z.
Let V = Πi(Vi)
where each Vi is an open set in Zi and Vi = Zi for all i ∈ I except

for i = i1, i2, · · · , in (say). Given that πik(P) converges to πik(z) for
all k = 1, 2, · · · , n. So Vik /∈ πik(P) and hence there exists Pk /∈ P
such that Vik ⊇ πik(Pk) implies π−1

ik
(Vik) ⊇ Pk for k = 1, 2, · · · , n. So

N ⊇ V =
n⋂

k=1

π−1
ik
(Vik) ⊇

n⋂
k=1

Pk, and
n⋂

k=1

Pk /∈ P implies N /∈ P. Thus

P converges to z.

Corollary 35. Let Z be the topological product of an indexed family
of topological spaces Zi| i ∈ I}. Let G be a grill on Z and z ∈ Z. Then
G converges to z in Z iff for each i ∈ I, the grill πi(G) converges to
πi(z) in Zi.

3. Zorn’s Lemma followed by primals and grills

In this section, we shall discuss about Zorn’s Lemma and its appli-
cation to primals and grills.

Lemma 36. Let Z be a nonempty set. Then the collection PZ (resp.
⟳Z) of all primals (resp. grills) on Z forms a partially ordered set
with respect to ⊆ (set inclusion).

Proof. The proof is straightforward and hence omitted.

Theorem 37. Considering partially ordered set (PZ ,⊆) (resp. (⟳Z

,⊆)) of the Lemma 36. and let {Pi| i ∈ I} (resp. {Gi| i ∈ I}) be a
chain in (PZ ,⊆) (resp. (⟳Z ,⊆)). Then P =

⋃
i∈I

Pi (resp. G =
⋃
i∈I

Gi )

is an upper bound of the chain {Pi| i ∈ I} (resp. {Gi| i ∈ I} ).

Proof. Since Z /∈ Pi for all i ∈ I, it follows that Z /∈ P. Let S ∈ P
and T ⊆ S. Then there exists k ∈ I such that S ∈ Pk, and hence
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T ∈ Pk. This implies T ∈ P. Now let S, T ∈ 2Z such that S /∈ P
and T /∈ P. Then S, T /∈

⋃
i∈I

Pi. Thus S, T /∈ Pi for all i ∈ I implies

S ∩ T /∈ Pi for all i ∈ I, and hence S ∩ T /∈ P. Contrapositively,
S ∩ T ∈ P implies either S ∈ P or T ∈ P. Hence, P is a primal on Z
and as a result P ∈ PZ . Thus, by construction P is an upper bound of
the chain {Pi| i ∈ I}.
In view of the Zorn’s Lemma, we conclude that (PZ ,⊆) (resp.

(⟳Z ,⊆)) has a maximal element, and we call it maximal primal or
ultraprimal (respectively, maximal grill or ultragrill).

Theorem 38. Let Z be a nonempty set. Then, every primal on Z is
contained in an ultraprimal on Z.

Proof. Let P be a primal on a set Z. Let PZ be the collection of all
primals on Z containing P . Then, P ∈ PZ and hence PZ is nonempty.
Also, the collection PZ with respect to the set inclusion (⊆) forms a
partially ordered set. Let {Pi|i ∈ I} be a non- empty chain in PZ and
let P =

⋃
i∈I

Pi. Then, P is a primal by the Theorem 37. Obviously,

P ∈ P as P ∈ Pi for each i ∈ I. So, P ∈ PZ and by its construction, it
is an upper bound for the chain {Pi|i ∈ I}. So by Zorn’s Lemma PZ

contains a maximal element (i.e., ultraprimal) say P1. Hence, P1 is an
ultraprimal containing P .

Theorem 39. Let Z be a nonempty set. Then, every grill on Z is
contained in a ultragrill on Z.

Lemma 40. Let Z be a nonempty set. Then, for any primal P ∈ PZ,
the following arguments are equivalent:

(1) P is a maximal primal;
(2) for any A ⊆ Z, either A /∈ P or Z \ A /∈ P;
(3) for any A,B ⊆ Z, A ∪B /∈ P iff either A /∈ P or B /∈ P.

Proof. 1 =⇒ 2: Let A /∈ P. Then by the above lemma, U := {M ∈
2Z | M /∈ P} is a ultrafilter, and hence A ∈ U. Thus Z \ A /∈ U, and
hence Z \ A ∈ P.
2 =⇒ 1: If possible suppose that P is not a ultraprimal in (PZ ,⊆).

Then FP is not a ultrafilter. Then there exists a filter F on Z such
that FP properly contained in F. Then there exists A ∈ F \ FP implis
A /∈ FP implies A ∈ P. Then by the given condition Z \A /∈ P implies
Z \A ∈ FP. As FP ⊆ F, then Z \A ∈ F. As A and Z \A both are the
members of F, then A ∩ (Z \ A) ∈ F, a contradiction. Therefore P is
a ultraprimal in (PZ ,⊆).
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2 =⇒ 3: Firstly, suppose A,B ∈ 2Z and A ∪ B /∈ P but both
A ∈ P and B ∈ P. Then by assumption, Z \ A /∈ P and Z \ B /∈ P
implies (Z \ A) ∩ (Z \ B) /∈ P and hence Z \ (A ∪ B) /∈ P. This
implies that Z \ (A ∪B) ∈ FP. Again A ∪B /∈ P implies A ∪B ∈ FP.
Thus,(A∪B) and Z \ (A∪B) both are the members of FP and hence
(A ∪B) ∩ (Z \ (A ∪B)) ∈ FP, a contradiction. Hence either A /∈ P or
B /∈ P.
For converse, A ⊂ A ∪ B as well as B ⊂ A ∪ B and either A /∈ P or
B /∈ P. Then from of definition of primal, we have A ∪B /∈ P.
3 =⇒ 2: Since for any A ⊂ Z, A ∪ (Z \ A) = Z /∈ P, by assumption
we have, either A /∈ P or Z \ A /∈ P.

Condition number (2.) of the Lemma 40 tells us that Algebra does
not form a primal and hence does not form a grill as well as a filter
also.

Corollary 41. Let Z be a nonempty set. Then for G ∈⟳Z, the fol-
lowing arguments are equivalent:

(1) G is a maximal grill;
(2) for any A ⊆ Z, either A /∈ G or Z \ A /∈ G
(3) for any A,B ⊆ Z, A ∩B /∈ G iff either A /∈ G or B /∈ G.

Proof. 1=⇒ 2: Let UG = {A ∈ 2Z | Z \ A /∈ G} be the ultrafilter
associated with the ultragrill G. Then for A ∈ 2Z , either A ∈ UG or
Z \A ∈ UG. That is either Z \A /∈ G or Z \ (Z \A) /∈ G implies either
A /∈ G or Z \ A /∈ G.
2 =⇒ 1: If possible suppose that G is not a ultragrill in (⟳Z ,⊆). Then
FG is not a ultrafilter. Then there exists a filter F on Z such that FG
properly contained in F. Then there exists A ∈ F \ FG. This implies,
A /∈ FG and hence Z \ A ∈ G. Then by the given condition A /∈ G
implies Z \ A ∈ FG. As FG ⊆ F, then Z \ A ∈ F. As A and Z \ A
both are the members of F, then A ∩ (Z \ A) ∈ F implies ∅ ∈ F, a
contradiction. Therefore G is a ultra grill in (⟳Z ,⊆).
2 =⇒ 3: Firstly, suppose A,B ∈ 2Z and A ∩ B /∈ G but both A ∈ P
and B ∈ P. Then by assumption, Z \ A /∈ G and Z \ B /∈ G implies
A ∈ FG and A ∈ FG. This implies that Z \ (A ∩ B) ∈ FG. Again
A ∩ B /∈ G implies Z \ (A ∩ B) ∈ FG. Thus,(A ∩ B) and Z \ (A ∩ B)
both are the members of FG and hence (A ∩B) ∩ (Z \ (A ∩B)) ∈ FG
implies ∅ ∈ FG, a contradiction. Hence either A /∈ G or B /∈ G.
For converse, A ∩ B ⊂ A as well as A ∩ B ⊂ B and either A /∈ G or
B /∈ G. Then from of definition of grill, we have A ∩B /∈ G.
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3 =⇒ 2: Since for any A ⊂ Z, A ∩ (Z \ A) = ∅ /∈ G, by assumption
we have, either A /∈ G or Z \ A /∈ G.

Theorem 42. Let U be a primal on a nonempty set Z. Then U is an
ultraprimal iff A ∩ F ̸= ∅, for all F /∈ U, implies A ∈ U.

Corollary 43. Let Z be a nonempty set. Then

(1) ΘZ := {FP| P ∈ PZ} is the collection of all filters on Z
(2) (ΘZ ,⊆) is a partially ordered set.
(3) the set of maximal filter (or ultrafilter) of (ΘZ ,⊆) coincides

with the maximal primal (or ultraprimal) of (PZ ,⊆)

Proof. Let F /∈ U such that A∩F ̸= ∅. As F ⊆ A∪F , then A∪F /∈ U.
Now by Theorem 40 (3), A ∈ U.
By the given condition it is not possible that Z\A ∈ U. If Z\A ∈ U

and from A ∈ U, (Z \ A ∈ U) ∩ A = ∅ ∈ U this implies (from the
Definition of primal) either A ∈ U or Z \ A ∈ U, a contradiction.
Hence Z \ A /∈ U and U is an ultraprimal.

Corollary 44. Let Z be a nonempty set. Then

(1) ΘZ := {FG| G ∈⟳Z} is the collection of all filter on Z
(2) (ΘZ ,⊆) is a partially ordered set.
(3) the set of maximal filter (or ultrafilter) of (⟳Z ,⊆) coincides

with the maximal grill (or ultragrill) of (⟳Z ,⊆)

Theorem 45. Let (Z, l) be a topological space. An ultraprimal U on
Z converges to a point z ∈ Z iff z is a cluster point of U.

Proof. Since every limit point is a cluster point of a primal, then direct
implication is true for any primal.
For the converse, suppose that (Z, l) is a topological space and z ∈ Z
is a cluster point of an ultraprimal U on Z. If U does not converges
to z, then the negation filter FU does not converges to z, then there a
neighbourhood N of Z such that N /∈ FU. This implies Z \ N ∈ FU.
Since z is cluster point of U, then z is cluster point of FU, thus every
neighbourhhod of z intersects every member of FU whereas N ∩ (Z \
N) = ∅, a contradiction. Hence U converges to z.

Theorem 46. Let (Z, l) be a topological space. An ultragrill V on Z
converges to a point z ∈ Z iff z is a cluster point of V.

Theorem 47. Suppose that (Z, l) is a topological space and U an
ultraprimal on Z. Then each of the following holds:

(1) If C is a closed subset of Z and C /∈ U, then AU ⊆ C.
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(2) If z ∈ AU, then c({z}) ⊆ AU.
(3) AU is closed.

Proof. 1. Let z ∈ AU, then Nz ∩ C ̸= ∅ for every Nz ∈ Nz. Then
z ∈ c(C) = C.

2. Let z′ ∈ c({z}). Then z ∈ Nz′ for each Nz′ ∈ Nz′ . As z ∈ AU,
Nz′ /∈ U for each Nz′ ∈ Nz′ implies z′ ∈ AU.

3. Let z ∈ c(AU). Then AU ∩Nz ̸= ∅, for each Nz ∈ Nz. It follows
that c(U) ∩ Nz ̸= ∅, for any U /∈ U and for all Nz. Observe that
c(U) /∈ U, for each U /∈ U. Since U is an ultraprimal, each Nz does
not belong to U. This belongs AU.

Corollary 48. Suppose that (Z, l) is a topological space and V be an
ultragrill on Z. Then each of the following holds:

(1) If C is a closed subset of Z and C /∈ V, then AV ⊆ C.
(2) If z ∈ AV, then c({z}) ⊆ AV.
(3) AV is closed.

Theorem 49. A topological space (Z, l) is compact iff every ultrapri-
mal (resp. ultragrill) on Z is convergent.

We give an alternative proof of the Tychonoff theorem.

Theorem 50. Let {Zi| i ∈ I} be a collection of nonempty topological
spaces and let Z be its topological product. Then Z is compact iff each
Zi is so for i ∈ I.

Proof. Sufficiency: Let P be an ultraprimal on Z. For each i ∈ I, let
Pi = πi(P ). Then Pi is a primal on Zi by Theorem 32,

Claim: πi(P ) is an ultraprimal:
Let A ⊆ Zi. Put B = π−1

i (A). Note that Z \ B = π−1
i (Zi \ A).

Since P is an ultraprimal, either A /∈ P or Z \ A /∈ P. In first case,
A = πi(B) /∈ πi(P ) while in the other case we get similarly that
Z \ A /∈ Pi. Hence Pi is an ultraprimal on Zi. By compactness of
Zi, Pi converges to zi (say). By Theorem 34, P converges to z where
z ∈ Z is defined by z(i) = zi for i ∈ I. Thus every ultraprimal on Z
is convergent and so Z is compact (by Theorem 49).

Convergence of the ultragrill may also be a tool for proving of the
Tychonoff Theorem.

Theorem 51. Assume (Z, l) be a topological space, then for an ultra-
primal (resp. ultragrill) U (resp. V) on Z. Then followings hold:

(1) (Z, l) is Hausdorff iff AU (resp. AV ) has at most one point.
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(2) (Z, l) is compact iff AU (resp. AV) has at least one element.

Corollary 52. A topological space (Z, l) is compact Hausdorff iff AU
(resp. AV) has exactly one element.

Proposition 53. Let ℏ : Z −→ Z ′ be a bijective function, and U
(resp. AV) an ultraprimal (resp. ultragrill) on Z. Then image of U
(resp. AV) under f is an ultraprimal (resp. ultragrill) on Z′.

Proof. Let U be an ultraprimal on Z. Then FU is an ultrafilter on Z.
If F is a filter on Z ′ such that ℏ(FU) ⊆ F, but ℏ(FU) ̸= F, then

there is A ∈ F such that A /∈ ℏ(FU). Therefore ℏ−1(A) /∈ FU. By
the characterization of ultrafilter [6], Z \ ℏ−1(A) ∈ FU. From ℏ(FU) ⊆
F, ℏ−1(ℏ(FU)) ⊆ ℏ−1(FU) implies Z \ ℏ−1(A) ∈ ℏ−1(F). Therefore
ℏ(Z \ ℏ−1(A)) ∈ ℏ(ℏ−1(F)) ⊆ F implies ℏ(Z \ ℏ−1(A)) ∈ F. Again
ℏ(Z \ ℏ−1(A)) ⊆ Z ′ \ A, so Z ′ \ A, so Z ′ \ A ∈ F it is not possible,
otherwise ∅ ∈ F. Thus ℏ(FU) is an ultrafilter and hence ℏ(U) is an
ultraprimal.

Conclusion

The article highlights the significance of Zorn’s Lemma in relation
to grills, primals and ideals. The Tychonoff product theorem can
be demonstrated using Zorn’s Lemma through the concepts of grills,
primals, and ideals. The exploration of Zorn’s Lemma is relevant for
the research on the axiom of choice.
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