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Abstract.  We investigate various connections between the no-
tions of filter, ideal, grill and primal in topological spaces, then we
characterize Hausdorff spaces, compact spaces and continuity of func-
tions via limit points and cluster points of grills and primals. As a
conclusion on our study on maximal primals, we provide a new proof
of Tychonoff theorem.

1. INTRODUCTION AND PRELIMINARIES

The study of filters has two sides one is related to Zorn’s Lemma
[3] and other sides is convergent of Filters. However joint studies
Zorn’s Lemma as well as convergence (see [10, 11, 17]) in front of
filter are also a remarkable part. The mathematical structures filter
8,9, 10, 11, 12, 17], grill [12, 13, 14, 15, 16], ideal [5] and primal [1]
are related to each other. Their related studied were established in
12, 7, 12, 14, 17].
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In this paper, we consider the further study of primals and grills in
aspect of their convergence and as the application of Zorn’s Lemma.
Characterizations of Hausdorff space and Compact space through the
convergence of primal, ultraprimal, grill and ultragrill are also an im-
portant phenomena. Throughout this paper, we denote ‘iff” as if and
only if.

Definition 1. A collection P of subsets of a nonempty set Z is said
to be a primal [1] on Z if it satisfies: (i) Z ¢ P, (it) [ € P and S C 1
implies S € P and (i1i) INS € P implies [ € P or S € P. Equivalently,
a collection P of subsets of a nonempty set Z is said to be a primal on
Z if it satisfies: (i) Z ¢ P, (i1) S ¢ P and S C I implies I ¢ P and
(1ii) I ¢ P and S ¢ P implies INS ¢ P.

Definition 2. A collection 1 of subsets of a nonempty set Z is called
an ideal [5] on Z if T is closed under hereditary property and finite
additivity property. If Z ¢ 1, then I is called proper ideal. A proper
ideal I is called an admissible ideal [4] if I contains every singleton.

Definition 3. A collection G C 2% on a set Z is said to be a grill on
Zif (i) @ ¢ G; (ii) A€ G and A C B implies B € G; (iii) AUB € G
implies A € G or B € G. In this manuscript, G denotes the grill.

Definition 4. A collection F C 2% on a set Z is said to be a filter [6]
on Z if (i) @ ¢ F; (ii) A€ F and A C B implies B € F; (iii) A€ TF
and B € F implies ANB € F. In this manuscript, F denotes the filter.

Definition 5. A collection F' C 2% on a set Z # & is said
to be a filter base (or base) [6] if the collection {F € P(Z)
Fcontains a member of B'} forms a filter on Z.

Definition 6. Let F be a filter on Z. Then the subfamily S of F is
said to be a sub-base [6] for F if the family of all finite intersection of
members of S is a base for F.

Definition 7. Let Fy and Fy be two filters on Z with Fy C Fy. Then
IFy is called subfilter [6] if 1 converges to some point in Z implies Fy
s0.

Definition 8. Let Z be a set endowed with a topology | is called a
topological space and it is written (Z,1) (or simply Z when there is
no scope for misunderstanding). Further, if P is a primal on Z, then
(Z,1,P) is called a primal topological space (or simply PTS). Conse-
quently c(A) denotes the closure of the subset A of Z in the topological
space (Z,1).
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Definition 9. The collection Py of all primals on Z forms a partially
ordered set with respect to C. Furthermore, every chain in (Pz, Q)
has an upper bound. Thus, by Zorn’s Lemma, (Pz, C) has an mazximal
element. This mazximal element is called ultraprimal.

F stands for a filter; U stands for a ultraprimal; Fy stands for a filter
obtained from the primal U; Pr stands for a primal obtained from the
filter F. 24 denotes the set of all subsets of the set Z.

A collection Oz of all grills on Z forms a partially ordered set with
respect to C. Furthermore, every chain in (Oz, C) has an upper
bound. Thus, by Zorn’s Lemma, (Oz, C) has an maximal element.
This maximal element is called ultragrill. In this manuscript V de-
notes the ultragrill.

Before entering the next section, we say that the o-algebra of Borel
sets [18] does not form a primal. Later we discuss why the o-algebra
does not form a primal.

2. PriMALS WITH FILTERS

In this section, we shall investigate more results of primals (resp.
grills). Through this section, we also shall discuss about the conver-
gence of primals (resp. grills) and its various properties. Continuity
is also a part of this section.

Lemma 10. Suppose Z is a non-empty set and S C 2% has the
finite intersection property. Then for F .= {A D S;NSyN---N
Si| S1,82,-+-,S, €S8, Lis arbitrary},

(1) P:={A€2? A¢TF} is a primal on Z.

(2) G:={A€2?|Z\A¢F} isagril on Z.

Proof. 1. As Z € F, then Z ¢ P. Let AC B € P. Then B ¢ F. If
possible suppose S1,S3,---,S; € § such that S; NS, N---NS;, C A
implies S1NSyN---N.S; C B and hence B € F, a contradiction. Thus
AelP.

Let A, B ¢ P. Then, A, B € F. Thus, there exists S;,Ss,--+,5 € S
and S7,85,---,5 € Ssuch that A D S5NS,N---NS; and B D
SINS,N---NS). This implies, ANB D $;NS,N---NSNSINS,N- - -NS)
and hence AN B € F. Thus, AN B ¢ P. Contrapositively, AN B € P
implies either A€ Por B € P.

Lemma 11. [7] Let P be a primal and G be a grill on a set Z. Then
(1) F:={AC Z| A¢P} is a filter on Z.
2) F':={AC Z| Z\ A ¢ G} is a filter on Z.
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One may denote these by Fp and Fg called these by filter associated
with the primal P and filter associated with the primal P, respectively.

Lemma 12. [7] Let F be filter on a set Z. Then
(1) Pr={AC Z| A¢F} is a primal on Z.
(2) Gp={ACZ| Z\A&F} isagril on Z.

Note that, the duality between ideals and filters, as well as the dual-
ity between primal and grills could be made. Thus, the complements
of the sets forming one family belonging to a one of the category form
a family belonging to the dual category. A filter can be derived by an
ideal on a set, analogous to Lemma 12 and conversely and the related
research has been elaborately studied by Matejdes in [7]. However, in
[7] the author used this converse but he did not mention that every
proper ideal gives a filter.

Lemma 13. Let P be a primal on a set Z. Then D := {t x P| P ¢
Pandt € P}. Fortx H, s x L € D, we define
txH>sxLiff HC L.
Then (D, >) is a directed set.

Proof. Let t x H, s x Le Dandt x H>sx L &€ D. Then H C L,
HNL¢P. Thus HNL # @. Pick z€ HNL. Then zx (HNL) € D
and 2 x (HNL)>tx Hand zx (HNL)>sx L. 1

In this case, we always get a net S : D — Z in Z by the rule
S(tx H) =t.

Corollary 14. Let G be a grill on a set Z. Then D := {txG| Z\G ¢
Gandte (Z\G)}. Fort x H, s x L € D, we define
txH>sxLiff HCL.
Then (D, >) is a directed set.

It is noteworthy that a net can be derived from an ideal on a set,
and the related research has been explored by the authors Modak et
al. in [17].

Theorem 15. Let S : D — Z be a net, and for every m € D, let
B, :={S(n)|n€ D andn > m}. Then
(1) I%:={A| AC Z\ B,, for somem € D} is a proper ideal on
Z [17].
(2) P :={A| Z\ A ¢ 1%} is a primal on Z.
(3) G¥ := {A| A ¢ 1%} is a grill on Z.

Example 16. Let (Z,1) be a topological space and z € Z. Then
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(1) Py, :={AC Z| A¢ N.} is a primal on Z.
(2) Gy, ={ACZ|Z\A¢ N.} isagril on Z.
where N, denotes the collection of all neighbourhoods of .
Definition 17. If Py (resp. Gy) and Py (resp. Go) are primals (resp.
grills) on a set Z such that Py C Py (resp. Gy C Gy) , then we call Py
(resp. Go ) a refinement of Py (resp. Gy ). We say that Py (resp. Go
) is finer than Py (resp. Gy).

Definition 18. Let (Z,1) be a topological space. A primal P (resp. G)
on Z converges to a point z € Z if Py, (resp. Gy, ) is a refinement of
P (resp. G). We say that z is a limit point of P (resp. G ).

In this connection, Ap (resp. Ag) denotes the set of all limits of P
(resp. G) on the topological space (Z,1).
Definition 19. Let (Z,1) be a topological space. A point z € Z is
a cluster point of a primal P (resp. grill P) if z € ({c(P)| P ¢ P}
(resp. z € ({c(G)| Z\ G ¢ G}).

Evidently, every limit point of a primal (resp. grill) is a cluster point
of that primal (resp. grill).
Lemma 20. Let (Z,1) be a topological space. Then the primal P on
Z converges to p € Z iff Fp converges to p.
Proof. Given that N, £ P. This implies that N, C Fp. 1

Lemma 21. Let (Z,1) be a topological space. Then the filter F on Z
converges to p € Z iff P converges to p.

Lemma 22. Let (Z,1) be a topological space. Then p € Z is a cluster
point of a primal P iff p is a cluster point of the negation filter Fp.

Lemma 23. Let (Z,1) be a topological space. Then p € Z is a cluster
point of a filter F iff p is a cluster point of the negation primal Pg.

Lemma 24. Let (Z,1) be a topological space and A C Z. Then z €
c(A) iff one of the condition holds

(1) there exists a primal P on Z such that A ¢ P and z € Ap.
(2) there exists a grill G on Z such that Z\ A ¢ G and z € Ag.
(3) z € c(A) iff there exists a primal P on Z such that A ¢ P and

A
P = p.
Proof. 1. Given that p € ¢(A). DefineP:={B C Z| BONN =@, N €
N,}. Since ANN # @&, A ¢ P. It is obvious that P is a primal on Z
and N, g P. Thus P % p.
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Conversely suppose a primal P on Z such that A ¢ P and P Z> p.
Then for N € N, ANN # &, otherwise ANN € P implies N € P, a
contradiction. 1

Proposition 25 ([6]). Let S be a family of subsets of a set Z. Then
there exists a filter on Z having S as a sub-base iff S has the finite
ntersection property.

Theorem 26. A topological space (Z,1) is Hausdorff iff no primal on
Z has more than one limat.

Proof. Suppose that (Z,[) is Hausdorff. Let P be a primal that con-
verges more than one limit say p and ¢ where p # ¢. Since the primal
P converges to p and ¢, then by Lemma 20, the filter Fp converges to
p and ¢. Then, N,, N, € Fp for each N, € N, and N, € N,. This
implies, N, N N, € Fp for each N, € N, and N, € N, and hence
N, NN, # & for cach N, € N, and N, € N, which contradicts the
fact that (Z,1) is Hausdorff. Thus, we must have p = q.

Conversely, assume that no primal on Z has more than one limit. If
(Z,1) is not Hausdorff, then there exist p,q € Z with p # ¢ such that
N, N N, # @ for each N, € N, and N, € N,. From this, it follows
that the family N, U N, has the finite intersection property. So by
Proposition 25, there exists a filter F on Z containing N, UN,. Evi-
dently, the filter F' converges both to p and ¢. Hence, by Lemma 21,
the primal Pp converges both to p and ¢ which contradicts the given
condition. So (Z,1) is Hausdorff. n

Corollary 27. A topological space (Z,1) is Hausdorff iff no grill on
Z has more than one limat.

Theorem 28. A topological space (Z,1) is Hausdorff iff a primal P
on Z converges to z implies z is the only cluster point of P.

Proof. Let (Z,1) be Hausdorff and the primal P on Z converges to z.
Then, z is a limit point of I and hence z is a cluster point of P. Assume
that 27 is another cluster point of P. Then, z,z; € ({c(P)| P ¢ P}.
This implies, 2,2, € ¢(P) for all P ¢ P and hence for each N, € N,
and N,, € N, such that N,NP # & and N,, N P # & for all P ¢ P.
Thus, (N,NN,,)NP = (N,NP)N(N,, NP)+# & for each N, € N,
and N,, € N,,. This implies, N, N Nz; # & for each N, € N, and
N,, € N,, which contradicts the fact that (Z,1) is Hausdorff. Hence,
z is the only cluster point of P.

Conversely, assume that a primal P on Z converges to z implies z is
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the only cluster point of P. We have to show that (Z,1) is Hausdorff.
If possible let (Z,1) is not Hausdorff. Then, by Theorem 26, there
exists a primal on Z has more than one limit. Also, since every limit
points are cluster point, then there exists a primal on Z has more than

one cluster point which contradicts the given condition. So (Z,1) is
Hausdorfl. g

Theorem 29. A topological space (Z,1) is Hausdorff iff a grill G on
Z converges to z implies z is the only cluster point of G.

Theorem 30 ([6]). For a topological space (Z,1), the following state-
ments are equivalent:

(1) Z is compact;

(2) Ewvery filter on Z has a cluster point in Z;

(3) Ewvery filter on Z has a convergent subfilter.

Theorem 31. For a topological space (Z,1), the following statements
are equivalent:
(1) Z is compact;
(2) Every primal (resp. grill) on Z has a cluster point in Z;
(3) Ewvery primal (resp. grill) on Z has a convergent refinement
primal (resp. grill).

Proof. 1. = 2.: Assume that Z is compact. We have to show that
every primal on Z has a cluster point in Z. If possible, let there exists
a primal P on Z which has no cluster point. Then by Lemma 22, the
negation filter Fp has no cluster point which contradicts the Theorem
30. Hence our assumption is wrong. Thus Every primal on Z has a
cluster point in Z.

2. = 3.: Assume that every primal on Z has a cluster point in Z.
We have to show that every primal on Z has a convergent refinement
primal. If possible let there exists a primal PP on Z which has no
convergent refinement primal. This implies that the negation filter Fp
has no convergent refinement negation filter. Thus, there exists a filter
on Z which has no convergent subfilter which contradicts the Theorem
30. Hence our assumption is wrong. Thus, Every primal on Z has a
convergent refinement primal.

3. = 1.: Assume that every primal on Z has a convergent refinement
primal. We have to show that Z is compact. If possible, let Z is
not compact. Then by Theorem Theorem 30, there exists filter FF
on Z which has no convergent subfilter. Thus, the primal Pr has no
convergent refinement primal which contradicts our given condition.
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Thus, Z is compact.
This completes the proof. 1

Theorem 32. Let h: Z — Z' be a bijective mapping. Then,
(1) For a primal P on Z, then h(P) := {h(P)| P € P} is a primal
on Z' [1].
(2) For a grill G on Z, h(G) := {h(G)| G € G} is also a grill on
7z’

Proof. (i) @ = h(2) ¢ h(G) as @ ¢ G and @ C Z.

(17) Let P,Q C Z' with P € h(G) and P C Q. Then, there exists
A C Z with A € G such that A(A) = P. This implies A(A) C @ and
hence {i(z)| v € A} C Q. Let S = {z € X| h(z) € Q}. This implies
A C S. Then, A(S) = {h(s)|]s € S} = Q and A C S. This implies,
S € G since G is a grill and hence h(S) € h(G). Thus, Q € A(G).
(17i) Let P,@Q ¢ h(G). Then, there does not exist A, B C Z with
A, B € G such that h(A) = P and h(B) = Q. Thus, A, B ¢ G implies
AUB ¢ G. So, (AU B) ¢ h(G) and hence h(A) U h(B) ¢ h(G)
implies P U @ ¢ h(G). Contrapositively, P U Q) € hA(G) implies either
P e h(G) or Q € h(G).

Hence h(G) := {h(G)| G € G} is a grill on Z’'. This completes the
proof. 1

Theorem 33. Let (Z1,11), (Zs,13) be two topological spaces, z € Z1,
and h : Z1 — Zy be a function. Then, following statements are hold.

(1) h is continuous at z iff whenever a primal P converges to z,
the image primal h(P) converges to h(z).

(2) h is continuous at z iff whenever a grill G converges to z, the
image grill h(G) converges to h(z).

Proof. Suppose h is continuous at z and P converges to z. Let N
be any neighbourhood of #(z) in Z,. By continuity of P, Ai=}(N) is a
neighbourhood of z in Z,. By the condition, A~!(N) ¢ P. This implies
that N ¢ h(P). So, A(IP) converges to h(z).

Conversely suppose that the condition holds. If possible suppose
that h is not continuous at z. Then there exists a neighbourhood N of
7i(z) such that A~ *(N) is not a neighbourhood of z in Z;. This means
that every neighbourhood of z in Z; intersects the complement Z; \
A~ (N) (if MN(Z\h Y(N)) = @, then M C i~ '(N) a contradiction).

Now & = AN, U {X \ A7'(N)} has the finite intersection prop-
erty. Then by Lemma 10 P := {A € 27| A 2 S;NSyN---N
Sy, S1,52,-++,5, € S, | is arbitrary} is a primal on Z;. By the
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construction of the primal P, N, € P, thus P converges to z. But ii(P)
does not converge to fi(z). Indeed since Z; \ A1 (N) ¢ A(P) implies
WZ \h 1 (N)) ¢ A(P). But Z\ N contains #(Z; \ A~ '(IV)) and hence
Zy\ N ¢ h(P). Thus N € A(PP), contradiction as P converges to z. 1

Theorem 34. Let Z be the topological product of an indexed family of
topological spaces {Z;| i € 1}. Let P be a primal on Z and z € Z. Then
P converges to z in Z iff for each i € I, the primal m;(IP) converges to
mi(2) in Z;.

Proof. The necessity of the condition follows from Theorem 33.
Sufficiency: Let N € N,. Then N contains a basic open set V
containing z.
where each V; is an open set in Z; and V; = Z; for all i € I except
for i = 41,19, .4, (say). Given that m;, (P) converges to m;, (z) for
all k = 1,2,--- ,n. SoV;, ¢ m;, (P) and hence there exists P, ¢ P
such that V;, D m;, (Py) implies Wil(‘/;k) D P, fork=1,2,---,n. So

N2V =Nm"'Vi)2 N P and (| Py ¢ P implies N ¢ P. Thus
k=1 k=1 k=1
P converges to z. &

Corollary 35. Let Z be the topological product of an indexed family
of topological spaces Z;| i € I}. Let G be a grill on Z and z € Z. Then
G converges to z in Z iff for each i € I, the grill m;(G) converges to
mi(2) in Z;.

3. ZORN’S LEMMA FOLLOWED BY PRIMALS AND GRILLS

In this section, we shall discuss about Zorn’s Lemma and its appli-
cation to primals and grills.

Lemma 36. Let Z be a nonempty set. Then the collection Py (resp.
Oz) of all primals (resp. grills) on Z forms a partially ordered set
with respect to C (set inclusion).

Proof. The proof is straightforward and hence omitted. §

Theorem 37. Considering partially ordered set (Pz,C) (resp. (Og

,C)) of the Lemma 36. and let {P;| i € I} (resp. {G;| i € I}) be a

chain in (Pz,C) (resp. (Oz,Z)). Then P = JP; (resp. G=UG; )
iel il

is an upper bound of the chain {P;| i € I} (resp. {G;|ie€ I} ).

Proof. Since Z ¢ P; for all i € I, it follows that Z ¢ P. Let S € P

and T" C S. Then there exists £ € I such that S € Py, and hence
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T € Pj. This implies T € P. Now let S,T € 27 such that S ¢ P

and T ¢ P. Then S, T ¢ |JP;. Thus S,T ¢ IP; for all i € I implies
i€l

SNT ¢ P; for all i € I, and hence SNT ¢ P. Contrapositively,

SNT € P implies either S € P or T € P. Hence, P is a primal on Z

and as a result P € P;. Thus, by construction P is an upper bound of

the chain {P;| i € I}. 1

In view of the Zorn’s Lemma, we conclude that (Pz,C) (resp.
(Oz,<)) has a maximal element, and we call it maximal primal or
ultraprimal (respectively, maximal grill or ultragrill).

Theorem 38. Let Z be a nonempty set. Then, every primal on Z is
contained i an ultraprimal on Z.

Proof. Let P be a primal on a set Z. Let P, be the collection of all
primals on Z containing P. Then, P € P, and hence P, is nonempty.
Also, the collection P, with respect to the set inclusion (C) forms a
partially ordered set. Let {P;]i € I} be a non- empty chain in P and
let P = |J P,. Then, P is a primal by the Theorem 37. Obviously,

icl
PePas P e P, foreach i € I. So, P € P, and by its construction, it
is an upper bound for the chain {P;|i € I}. So by Zorn’s Lemma Py
contains a maximal element (i.e., ultraprimal) say P;. Hence, P, is an

ultraprimal containing P. 1

Theorem 39. Let Z be a nonempty set. Then, every grill on Z is
contained i a ultragrill on Z.

Lemma 40. Let Z be a nonempty set. Then, for any primal P € Py,
the following arguments are equivalent:

(1) P is a mazimal primal;

(2) for any A C Z, either A¢ P or Z\ A ¢ P,

(3) for any A,BC Z, AUB ¢ P iff either A¢ P or B ¢ P.

Proof. 1 = 2: Let A ¢ P. Then by the above lemma, U := {M €
27| M ¢ P} is a ultrafilter, and hence A € U. Thus Z \ A ¢ U, and
hence Z \ A € P.

2 = 1: If possible suppose that P is not a ultraprimal in (P, C).
Then Fp is not a ultrafilter. Then there exists a filter F on Z such
that Fp properly contained in F. Then there exists A € F \ Fp implis
A ¢ Fp implies A € P. Then by the given condition Z \ A ¢ P implies
Z\NA€Fp. AsFp CF, then Z\ A€ F. As A and Z\ A both are the
members of F, then AN (Z\ A) € F, a contradiction. Therefore P is
a ultraprimal in (P2, C).
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2 = 3: Firstly, suppose A,B € 22 and AU B ¢ P but both
A € P and B € P. Then by assumption, Z\ A ¢ Pand Z\ B ¢ P
implies (Z \ A)N(Z\ B) ¢ P and hence Z \ (AU B) ¢ P. This
implies that Z \ (AU B) € Fp. Again AU B ¢ P implies AU B € Fp.
Thus,(AU B) and Z \ (AU B) both are the members of Fp and hence
(AUB)N(Z\ (AU B)) € Fp, a contradiction. Hence either A ¢ P or
B¢P.

For converse, A C AU B as well as B C AU B and either A ¢ P or
B ¢ P. Then from of definition of primal, we have AU B ¢ P.

3 = 2: Since for any A C Z, AU (Z\ A) = Z ¢ P, by assumption
we have, either A¢Por Z\ A¢P.

Condition number (2.) of the Lemma 40 tells us that Algebra does
not form a primal and hence does not form a grill as well as a filter
also.

Corollary 41. Let Z be a nonempty set. Then for G €0y, the fol-
lowing arguments are equivalent:

(1) G is a maximal grill;
(2) for any AC Z, either A¢ G or Z\ A¢ G
(3) forany A,BC Z, ANB ¢ G iff either A¢ G or B ¢ G.

Proof. 1= 2: Let Ug = {A € 27| Z\ A ¢ G} be the ultrafilter
associated with the ultragrill G. Then for A € 27, either A € Ug or
Z\ A € Ug. That is either Z\ A ¢ Gor Z\ (Z\ A) ¢ G implies either
A¢Gor Z\A¢G.

2 = 1: If possible suppose that G is not a ultragrill in (04, C). Then
Fg is not a ultrafilter. Then there exists a filter IF on Z such that Fg
properly contained in F. Then there exists A € F \ Fg. This implies,
A ¢ Fg and hence Z \ A € G. Then by the given condition A ¢ G
implies Z\ A € Fg. AsFg CF, then Z\ A€ F. As Aand Z\ A
both are the members of F, then AN (Z\ A) € F implies @ € I, a
contradiction. Therefore G is a ultra grill in (Oz, C).

2 = 3: Firstly, suppose 4,B € 22 and AN B ¢ G but both A € P
and B € P. Then by assumption, Z\ A ¢ G and Z \ B ¢ G implies
A € Fg and A € Fg. This implies that Z \ (AN B) € Fg. Again
ANB ¢ G implies Z\ (AN B) € Fg. Thus, (AN B) and Z \ (AN B)
both are the members of Fg and hence (AN B)N(Z\ (AN B)) € Fg
implies @ € Fg, a contradiction. Hence either A ¢ G or B ¢ G.

For converse, AN B C A as well as AN B C B and either A ¢ G or
B ¢ G. Then from of definition of grill, we have AN B ¢ G.
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3 = 2: Since for any A C Z, AN(Z\ A) = & ¢ G, by assumption
we have, either A¢ Gor Z\ A¢ G. 1

Theorem 42. Let U be a primal on a nonempty set Z. Then U is an
ultraprimal iff ANF # @, for all F ¢ U, implies A € U.

Corollary 43. Let Z be a nonempty set. Then

(1) ©z := {Fp| P € P4} is the collection of all filters on Z

(2) (©4,C) is a partially ordered set.

(3) the set of maximal filter (or ultrafilter) of (©z,C) coincides
with the mazimal primal (or ultraprimal) of (Pz, C)

Proof. Let F' ¢ U such that ANF # @&. As FF C AUF, then AUF ¢ U.
Now by Theorem 40 (3), A € U.

By the given condition it is not possible that Z\ A € U. If Z\A € U
and from A € U, (Z\ A€ U)NA =@ € U this implies (from the
Definition of primal) either A € U or Z \ A € U, a contradiction.
Hence Z\ A ¢ U and U is an ultraprimal. 1

Corollary 44. Let Z be a nonempty set. Then

(1) ©z :={Fg| G €Oz} is the collection of all filter on Z

(2) (©z,Q) is a partially ordered set.

(3) the set of maximal filter (or ultrafilter) of (Oz,C) coincides
with the mazimal grill (or ultragrill) of (Oz, C)

Theorem 45. Let (Z,1) be a topological space. An ultraprimal U on
Z converges to a point z € Z iff z is a cluster point of U.

Proof. Since every limit point is a cluster point of a primal, then direct
implication is true for any primal.

For the converse, suppose that (Z,1) is a topological space and z € Z
is a cluster point of an ultraprimal U on Z. If U does not converges
to z, then the negation filter Fy does not converges to z, then there a
neighbourhood N of Z such that N ¢ Fy. This implies Z \ N € Fy.
Since z is cluster point of U, then z is cluster point of Fy, thus every
neighbourhhod of z intersects every member of Fyy whereas N N (Z \
N) = @, a contradiction. Hence U converges to z. i

Theorem 46. Let (Z,1) be a topological space. An ultragrill V on Z
converges to a point z € Z iff z is a cluster point of V.

Theorem 47. Suppose that (Z,1) is a topological space and U an
ultraprimal on Z. Then each of the following holds:

(1) If C is a closed subset of Z and C ¢ U, then Ay C C.
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(2) If z € Ay, then ¢({z}) C Ay.
(3) Ay is closed.

Proof. 1. Let z € Ay, then N, N C # @ for every N, € N,. Then
ze€c(C)=C.

2. Let 2/ € ¢({z}). Then z € N, for each N, € N,. As z € Ay,
N, ¢ U for each N, € N,/ implies 2’ € Ay.

3. Let z € ¢(Ay). Then Ay N N, # &, for each N, € N,. Tt follows
that ¢(U) N N, # @, for any U ¢ U and for all N,. Observe that
c(U) ¢ U, for each U ¢ U. Since U is an ultraprimal, each N, does
not belong to U. This belongs Ay.

Corollary 48. Suppose that (Z,1) is a topological space and V be an
ultragrill on Z. Then each of the following holds:

(1) If C is a closed subset of Z and C ¢ V, then Ay C C.
(2) If z € Ay, then ¢({z}) C Ay.
(3) Ay is closed.

Theorem 49. A topological space (Z,1) is compact iff every ultrapri-
mal (resp. ultragrill) on Z is convergent.

We give an alternative proof of the Tychonoff theorem.

Theorem 50. Let {Z;| i € I} be a collection of nonempty topological
spaces and let Z be its topological product. Then Z is compact iff each
Z; is so fori e I.

Proof. Sufficiency: Let P be an ultraprimal on Z. For each i € I, let
P; = m;(P). Then P; is a primal on Z; by Theorem 32,

Claim: m;(P) is an ultraprimal:

Let A C Z;. Put B = 7;'(A). Note that Z\ B = 7, '(Z; \ A).
Since P is an ultraprimal, either A ¢ P or Z\ A ¢ P. In first case,
A = m(B) ¢ m(P) while in the other case we get similarly that
Z\ A ¢ P;. Hence P; is an ultraprimal on Z;. By compactness of
Z;, P; converges to z; (say). By Theorem 34, P converges to z where
z € Z is defined by z(i) = z; for i € I. Thus every ultraprimal on Z
is convergent and so Z is compact (by Theorem 49). 1

Convergence of the ultragrill may also be a tool for proving of the
Tychonoff Theorem.

Theorem 51. Assume (Z,1) be a topological space, then for an ultra-
primal (resp. ultragrill) U (resp. V) on Z. Then followings hold:

(1) (Z,1) is Hausdor(f iff Ay (resp. Ay ) has at most one point.
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(2) (Z,1) is compact iff Ay (resp. Av) has at least one element.

Corollary 52. A topological space (Z,1) is compact Hausdorff iff Ay
(resp. Ay ) has exactly one element.

Proposition 53. Let h : Z — Z' be a bijective function, and U
(resp. Ay) an ultraprimal (resp. wultragrill) on Z. Then image of U
(resp. Ay ) under f is an ultraprimal (resp. ultragrill) on Z!.

Proof. Let U be an ultraprimal on Z. Then Fy is an ultrafilter on Z.

If Fis a filter on Z’ such that A(Fy) C F, but A(Fy) # F, then
there is A € F such that A ¢ A(Fy). Therefore i~'(A) ¢ Fy. By
the characterization of ultrafilter [6], Z \ i~*(A) € Fy. From A(Fy) C
F, i~ (h(Fy)) C A Y(Fy) implies Z \ i~'(A) € A *(F). Therefore
mZ\ h'(A)) € A(h ' (F)) C F implies i(Z \ A '(A)) € F. Again
WZ\h(A) CZ'\A soZ'\ A soZ'\ AeF it is not possible,
otherwise @ € F. Thus A(Fy) is an ultrafilter and hence A(U) is an
ultraprimal.

CONCLUSION

The article highlights the significance of Zorn’s Lemma in relation
to grills, primals and ideals. The Tychonoff product theorem can
be demonstrated using Zorn’s Lemma through the concepts of grills,
primals, and ideals. The exploration of Zorn’s Lemma is relevant for
the research on the axiom of choice.
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