"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 34 (2024), No. 2, 59 - 66

HULL-KERNEL TOPOLOGY ON A SPECIFIC CLASS OF TOPOLOGICAL ALGEBRAS

MAJID SABET AND SOLMAZ NOURI

Abstract.Let A be Fundamental Strongly Sequential algebra (FSS). It is known that carrier space Φ_A is compact and Hausdorff, In this paper we introduce a topology on Φ_A , called Hull-kernel topology, which coincides with the A-topology in certain circumstances.

1. Introduction

In 1979, T. Husain [7] introduced the concept of strongly sequential topological algebras. Also E.Ansari-Piri in [1] introduced fundamental topological algebras to generalized the famous Cohen factorization theorem in 1990. In [5], Bonsal and Duncan showed that if A is a complex commutative Banach algebra with or without unit, its carrier space Φ_A is locally compact Hausdorff space with respect to Atopology. They consider Hull-kernel topology on Φ_A which coincides with A-topology in a completely regular algebra. In this note, we consider fundamental strongly sequential algebras and show a result analogous to that of Bonsal and Duncan is true etc.

Keywords and phrases: Strongly Sequential algebras, Fundamental algebras, Carrier space, Hull-kernel topology.

(2020) Mathematics Subject Classification: 46H05; 46H20.

2. PRELIMINARIES

We recall some basic definitions and known results.

In this article, an algebra A is called topological algebra if it is a complex algebra equipped with a Hausdorff topology such that:

- (1) The map $(x, y) \mapsto x + y$ from $A \times A$ to A is continuous.
- (2) The map $(\alpha, x) \longmapsto \alpha x$ from $\mathbb{C} \times A$ to A is continuous.
- (3) The map $(x.y) \longmapsto xy$ from $A \times A$ to A is continuous.
- [7] Topological algebra A is said to be strongly sequential if there exists a neighborhood U of zero such that for all $x \in U$, $x^k \to 0$ as $k \to \infty$.
- [1] A is said to be a fundamental topological algebra if there exists b > 1 such that for every sequence $(x_n)_n$ of A the convergence of $b^n(x_{n+1} x_n)$ to zero in A implies that $(x_n)_n$ is a Cauchy sequence.

The topological algebra A is called FSS, if it is fundamental and strongly sequential.

In a unital algebra, the set of invertible elements of A is denoted by Inv(A). A unital topological algebra A is called Q-algebra if Inv(A) is an open set.

A multiplicative linear functional on A is a non-zero linear functional φ on A such that for all $x, y \in A$:

$$\varphi(xy) = \varphi(x)\varphi(y).$$

The set of all multiplicative linear functional on A with A-topology, is denoted by Φ_A , the carrier space of algebra A.

Theorem 1. Suppose A is a complete metrisable FSS algebra. Then the carrier space of A is compact with A-topology.

Proof. See [3, Proposition 3.5].

Theorem 2. Suppose A is a complete metrisable Q-algebra. Then every multiplicative linear functional is continuous.

Proof. See [6].

Theorem 3. Every multiplicative linear functional is continuous on a complete metrisable FSS algebra.

Proof. Every complete metrisable FSS algebra is a complete metrisable Q-algebra. See [2, Proposition 3.2]. \blacksquare

3. Hull-kernel topology on complete metrisable FSS algebra

In this article, we suppose A is a unital commutative complete metrisable FSS algebra and Φ_A is its carrier space. By Theorem 1, Φ_A is a compact and Hausdorff space with respect to the A-topology. We now consider a second topology on Φ_A which in general differs from the A-topology but coincides with it for certain important algebras A.

Definition 4. Given a subset E of Φ_A , the kernel of E, ker(E), is defined by

$$ker(E) = \bigcap \{ ker \varphi : \varphi \in E \}.$$

Given a subset J of A, the hull of J, is defined by

$$hul(J) = \{ \varphi \in \Phi_A : ker\varphi \supset J \}.$$

We denote hul (ker(E)) by \tilde{E} .

Theorem 5. In an algebra A we have

- (1) ker(E) is proper closed ideal of A.
- (2) hul(J) is a closed and therefore compact ideal of Φ_A with respect to A-topology, so \tilde{E} is a closed ideal of Φ_A
- (3) If $\psi \in \Phi_A$, then $\psi \in \tilde{E}$ if and only if $\ker \psi \supseteq \ker (E)$.
- (4) If $E_1 \subseteq E_2 \subseteq \Phi_A$, then $ker(E_1) \supseteq ker(E_2)$.
- (5) If $J_1 \subseteq J_2 \subseteq A$, then hul $(J_1) \supseteq hul (J_2)$.
- (6) If $E_1 \subseteq E_2 \subseteq \Phi_A$, then $\tilde{E_1} \subseteq \tilde{E_2}$.
- *Proof.* (1) By Theorem 3, since every linear multiplicative functional is continuous, its kernel is closed. Therefore, the ker(E) is a closed ideal of A. Moreover, since every linear multiplicative functional is nonzero, the ker(E) is a proper ideal of A.
- (2) Let ϕ be an element of Φ_A and let $(\phi_i)_i$ be a net of elements in hul(J) that converges to ϕ in the A-topology. It is clear that ϕ is an element of hul(J). Therefore, hul(J) and consequently $\tilde{E} = hul(ker(E))$ are closed. By Theorem 1, since Φ_A is compact with the A-topology, it follows that hul(J) is also compact.
 - (3), (4), (5) are clear by Definition 4.

Theorem 6. (1) $\ker(E) = \ker(\tilde{E})$.

$$(2) \ E \subseteq \widetilde{E} = \widetilde{\left(\widetilde{E}\right)}.$$

$$(3) \ (\widetilde{E_1 \cup E_2}) = \widetilde{E_1} \cup \widetilde{E_2}.$$

Proof. See [5, page 115].

Definition 7. Let X be a set with power set P(X), and c be a mapping from the P(X) to itself. Then c is a Kuratowski closure operator if and only if it satisfies the following Kuratowski closure axioms for all $A, B \subseteq X$.

- (1) $c(\emptyset) = \emptyset$.
- (2) $A \subseteq c(A)$.
- $(3) \ c(c(A)) \subseteq c(A).$
- $(4) c(A \cup B) = c(A) \cup c(B).$

This operator naturally produces a topology on X with the following definition.

In this topology $F \subseteq X$ is closed, if and only if c(F) = F.

A set is open if its complement is closed. Note that (4) implies that c is monotone, therefore using (2) and (3) it follows that c is idempotent.

Definition 8. If we consider $X = \Phi_A$ and $c(E) = \tilde{E}$, by Theorem 6, c will be a Kuratowski closure operator. The topology determined by c on Φ_A is called the hull-kernel topology.

Theorem 9. (1) $\varphi_0 \in \Phi_A \backslash \tilde{E}$ if and only if there exists $a \in A$, such that $\hat{a}(\varphi) = 0 \ (\varphi \in E)$ and $\hat{a}(\varphi_0) \neq 0$.

- (2) The A-topology contains the Hull-kernel topology.
- (3) The hull of an ideal is compact in the hull-kernel topology.

Proof. (1)
$$\tilde{E} = hul (ker(E)) = \{ \varphi \in \Phi_A : ker\varphi \supseteq ker(E) \}$$
It means
$$\varphi_0 \in \tilde{E} \Leftrightarrow ker\varphi_0 \supseteq ker(E) = \bigcap \{ ker\varphi : \varphi \in E \}.$$
So,
$$\varphi_0 \in \Phi_A \backslash \tilde{E} \Leftrightarrow ker\varphi_0 \not\supseteq \bigcap \{ ker\varphi : \varphi \in E \} \Leftrightarrow$$

$$\exists a \in A : a \notin ker\varphi_0, a \in \bigcap \{ker\varphi : \varphi \in E\} \Leftrightarrow$$
$$\exists a \in A : \hat{a} (\varphi_0) \neq 0, \hat{a} (\varphi) = 0 (\varphi \in E)$$

(2) Suppose τ_h and τ_A denote the Hull-kernel topology and A-topology respectively on Φ_A . We will show $\tau_h \subseteq \tau_A$. Let E is a τ_h -closed set of Φ_A , then we will show that it is τ_A -closed. Since E is τ_h -closed on Φ_A , by definition $E = \tilde{E}$. If $\varphi_0 \in \bar{E}$; we want to show $\varphi_0 \in E = \tilde{E}$. Since $\varphi_0 \in \bar{E}$, so there exist a net $(\varphi_i)_i$ of E such that $\varphi_i \to \varphi_0$. If $\varphi_0 \in \Phi_A \setminus \tilde{E}$ by (1), there exists $a \in A$ such that $\hat{a}(\varphi) = 0$ ($\varphi \in E$) and $\hat{a}(\varphi_0) \neq 0$. Since \hat{a} is a complex continuous function on Φ_A with A-topology, hence

$$\hat{a}\left(\varphi_{i}\right) \rightarrow \hat{a}\left(\varphi_{0}\right)$$

Left side of above equation is zero and the right side is non-zero which is a contradiction.

(3) Let J be an ideal of A. By Theorem 5(2), hul(J) is compact with A-topology. Suppose $(U_i)_{i\in I}$ is an open cover for hul(J) with Hull-kernel topology. By (2), since U_i is also τ_A -open, hul(J) is also compact with A-topology. Then, there is finite subcover of $(U_i)_{i\in I}$ for hul(J). It means hul(J) is compact with Hull-kernel topology too.

In the following, we recall that the algebra A is called semi-simple when

$$\bigcap \{ker\varphi : \varphi \in \Phi_A\} = \{0\}$$

Theorem 10. Let E be a non-empty subset of Φ_A that is closed with hull-kernel topology. Let $B = A/\ker(E)$, let π denote the canonical mapping of A onto B, and π^* denote the dual mapping of Φ_B into Φ_A given by

$$(\pi^*\psi)(a) = \psi(\pi a) \quad (\psi \in \Phi_B, a \in A)$$

Then π^* is a homeomorphism of Φ_B with B-topology onto E with the A-topology.

Proof. By Theorem 5(1) It is easy to see that ker(E) is a proper closed ideal of A. Also, B is a unital commutative complete metrisable FSS.[8] Let $\psi \in \Phi_B$. Since π is a linear multiplicative functional of A onto B therefore $\pi\psi$ is a complex linear multiplicative functional of A. ψ is non-zero so, there exists π a of B such that $\psi(\pi a) \neq 0$. Therefore $\pi\psi$ is non-zero and then it is in Φ_A .

Hence, $\pi^*: \Phi_B \to \Phi_A$ given by $\pi^*(\psi) = \pi \psi$ is well defined. For $\psi \in \Phi_B$ and $a \in ker(E)$, πa is the zero of B, then we have

$$(\pi^* \ \psi)(a) = \psi(\pi a) = 0,$$

therefore $a \in ker(\pi^*\psi)$ and so $ker(\pi^*\psi) \supseteq ker(E)$.

since $\pi^* \ \psi \in \Phi_A$, then $\pi^* \ \psi \in hul (\ker (E)) = \tilde{E}$. Moreover E is closed in the Hull-kernel topology So, $\tilde{E} = E$ and therefore $\pi^* \psi \in E$.

Now let $\varphi \in E$, by definition it is clear that $ker(E) \subseteq ker\varphi$. For $b \in B = A/ker(E)$, there exists $a \in A$, such that $\pi a = b$. Define a complex mapping ψ of B, given by $\psi(b) = \varphi(a)$. Let $b_1 = a_1 + ker(E) = b_2 = a_2 + ker(E)$. Then $a_1 - a_2 \in ker(E)$ and according to definition $\varphi(a_1 - a_2) = 0$ and so $\varphi(a_1) = \varphi(a_2)$. It means ψ is well defined. It is clear that ψ is linear. Also, it is multiplicative because

$$\psi\left(\left(\pi a_{1}\right)\left(\pi a_{2}\right)\right)=\psi\left(\pi\left(a_{1} a_{2}\right)\right)=\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=\psi\left(\pi a_{1}\right) \psi\left(\pi a_{2}\right)$$

So $\psi\in\Phi_{B}$ and we have

$$\pi^* \left(\psi \right) = \pi \psi = \varphi$$

Therefore π^* is a mapping of Φ_B onto E.

It is clear π^* is linear. Let $\pi^*(\psi) = \pi \psi = 0$, So for all $\pi a \in B$ we have $\pi(\psi(a)) = (\pi \psi) a = 0$. It means ψ is zero mapping and therefore $\ker(\pi^*) = 0$, hence π^* is injective and so bijective function.

Since Φ_B is compact in the B-topology, to show that π^* is a homeomorphism it is enough to show π^* is continuous. By definition of A-topology, the below sets create a local base for all $\varphi \in \Phi_A$

$$\{V(\varphi; x_1, \dots, x_n; \varepsilon) : n\epsilon N , x_1, \dots, x_n \epsilon A, \varepsilon > 0\}$$

Which

$$V\left(\varphi;x_{1},\ldots,x_{n};\varepsilon\right)=\left\{ \psi\in\Phi_{A}:\ \left|\psi\left(x_{i}\right)-\varphi\left(x_{i}\right)\right|<\varepsilon\quad i:1,2,\ldots,n\right\} .$$

Now suppose ψ_0 is an arbitrary element of Φ_B and $V = V(\pi^*(\psi_0); a_1, \dots, a_n; \varepsilon)$ is a neighborhood of $\pi^*(\psi_0)$. We will find a neighborhood U of ψ_0 such that for all $\psi \in U, \pi^*(\psi) \in V$.

$$V(\pi^{*}(\psi_{0}); \pi a_{1}, \dots, \pi a_{n}; \varepsilon)$$

$$= \{\pi^{*} \psi \in E : |\pi^{*} \psi(a_{i}) - \pi^{*}(\psi_{0})(a_{i})| < \varepsilon \quad i : 1, 2, \dots, n\}$$

$$= \{\pi^{*} \psi \in E : |\psi(\pi a_{i}) - \psi_{0}(\pi a_{i})| < \varepsilon \quad i : 1, 2, \dots, n\}$$

According to this

$$U = \{ \psi \in \Phi_B : |\psi(\pi a_i) - \psi_0(\pi a_i)| < \varepsilon \quad i : 1, 2, \dots, n \}$$

is an open set in Φ_B that for all $\psi \in U$ we have

$$\pi^* \ \psi \in V = \pi^* U.$$

By definition, to show B is semi-simple it is enough to show that

$$\bigcap \{ker\varphi: \ \varphi \in \Phi_B\} = \{0\}$$

Suppose $b = \pi a \in \bigcap \{ ker \varphi : \varphi \in \Phi_B \} \subseteq B$. It means for all $\psi \in \Phi_B$ we have

$$\psi(b) = \psi(\pi a) = 0.$$

And so, for all $\psi \in \Phi_B$, $(\pi^* \psi)(a) = \psi(\pi a) = 0$. Let $\varphi \in E$. Since π^* is a surjective mapping of Φ_B onto E, there exists $\psi \in \Phi_B$, such that $\varphi = \pi^* \psi$. Hence $\varphi(a) = \pi^* \psi(a) = 0$. So

$$a \in ker(E) = \bigcap \{ ker \varphi : \varphi \in E \}$$

Therefore $b = \pi a = 0_B$.

Remark 11. Given E is a compact set in the A-topology. We know that E is compact in Hull-kernel topology, but we cannot conclude that E is closed in the Hull-kernel topology, since that topology need not be Hausdorff.

Definition 12. A unital topological algebra A is said to be completely regular if Φ_A is Hausdorff space in the Hull-kernel topology. [5]

Theorem 13. Let A be a unital commutative complete metrisable FSS algebra. Then A is completely regular if and only if the A-topology coincides with the Hull- kernel topology in Φ_A .

Proof. In this proof τ_A and τ_h will denote the A-topology and the Hull-kernel topology on Φ_A respectively.

Suppose A is completely regular topological algebra. We will show $\tau_h = \tau_A$. By Theorem 9(2), $\tau_h \subseteq \tau_A$, so it is enough to show $\tau_A \subseteq \tau_h$. Let F be a τ_A -closed subset of Φ_A . We will show F is τ_h -closed, it means $F = \tilde{F}$. According to Theorem 6(2) $F \subseteq \tilde{F}$, so it is enough to show $\tilde{F} \subset F$.

Since F is τ_A -closed and Φ_A is τ_A -compact, so F is τ_A -compact set and therefore τ_h -compact.

Suppose $f \in F$ and $\varphi_0 \in \Phi_A \backslash F$. It is obvious that $f \neq \varphi_0$. By definition of completely regular algebra, since Φ_A is τ_h - Hausdorff, so f and φ_0 have τ_h - neighborhood W_f and W_{φ_0} such that $W_f \cap W_{\varphi_0} = \emptyset$. It is clear that complement of W_{φ_0} is a τ_h -closed set and so $W_{\varphi_0}^c = \tilde{W}_{\varphi_0}^c$. We have

$$W_f \subseteq W_{\varphi_0}^c \Rightarrow \tilde{W_f} \subseteq \tilde{W_{\varphi_0}^c} = W_{\varphi_0}^c$$

Therefore $\varphi_0 \notin \tilde{W}_f = hul(ker(W_f)).$

Based on $\{W_f : f \in F\}$ is a τ_h -open cover for F, and F is a τ_h -compact, So there exists τ_h -open sets U_1, \ldots, U_n such that $F \subseteq \bigcup_{i=1}^n U_i$ and $\varphi_0 \notin hul(ker(U_i))$. Therefore, for each i = 1, 2, ..., n, there exists $v_i \in ker(U_i)$ which $\varphi_0(v_i) \neq 0$. Let $v = v_1 \ldots v_n$, then $\varphi_0(v) \neq 0$ and so, we will have $\varphi_0 \notin \tilde{F} = hul(ker(F))$.

Conversely, suppose that $\tau_h = \tau_A$, since τ_A is Hausdorff topology then obviously, τ_h is Hausdorff. So, algebra A is completely regular.

References

- [1] E. Ansari-Piri, **A class of factorable topological algebras**, Proc. Edinbourgh Math. Soc. (2) 33 (1990), no. 1, 53–59.
- [2] E. Ansari-Piri, M. Sabet and S. Sharifil, A class of complete metrizable Q-algebras. SSRSMI. Vol. 26 (2016), no.1, 17–24.
- [3] E. Ansari-Piri, M. Sabet, The numerical range of an element of a class of topological algebras. IJPAM. (2019), no. 41, 58–64.
- [4] V. K. Balachandran, Topological algebras. North- Holland Mathematic Studies. 185. North- Holland Publishing Co, Amsterdam, 2000.
- [5] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin Heidelberg New Yourk, 1973.
- [6] T.G. Honary, M. Najafi Tavani, Upper semicontinuity of the spectrum function and automatic continuity in topological Q-algebras. Note di Matematica Note math. 28 (2008), 57–62.
- [7] T.Husain, Infrasequential topological algebra. Canadian Math. Bull. 22 (1979), 413–418.
- [8] M. Sabet, A. Morovatpoor, Generators and joint spectra for special class of topological algebras, manuscript.

Payame Noor University, Department of Mathematics , Tehran, Iran e-mail: MSG@pnu.ac.ir

university of Guilan,

Department of Pure Mathematics, Faculty of Mathematical Science , Rasht, Iran

e-mail: solmaznouri85@gmail.com