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Abstract. This paper discusses the asynchronous machine flux estimation by using a 
complete order estimator (Luenberger estimator). There is presented the structure of this 
optimal observer type and the numerical implementations algorithm. It is performed the time-
discrete state-space  model of the asynchronous machine and the algorithm for the numerical 
implementations of the  Luenberger state estimator. The estimator of the rotor and stator flux 
is simulated using the MATLAB\SIMULINK files. Finally, the conclusions of this estimator 
study are presented. 
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1. INTRODUCTION 
 
The optimal control of the asynchronous machine used either motor drive or generator in the particular case of 
wind power stations or low power hydro-electric power stations, requires a higher precision knowledge of the 
variable quantities and parameters with the operating conditions. The modern systems of the asynchronous 
machine with static power converters conceived on the field-orientation control principle, using the 
mathematical model of the machine what contains a few quantities that continuously varying with the speed and 
with the magnetic and thermal level strains. The optimal control with dynamic and energetic higher performance 
of this type systems, requires an accurately real time values determination of the variables quantities that 
contained in the machine model, thing that can not easy realised by the direct measurement. The systems with 
the field-orientated  controls, use the machine model in a reference frame orientated by one from those tree 
components of the magnetic flux: stator flux, rotor flux or air-gap flux. In this case importantly is to know with 
precision and in real time as well as of value as of components flux positions. The direct measurement of the 
magnetic flux is generally difficult and it supposes the intervention in the machines construction for the sensor 
settlement (e.g. measurement coils, Hall sensors), that's not always possible and that can affect the reliability of 
the machine. The indirect calculus of the flux is preferred and it is based on some measurable quantities such as: 
tensions, currents, speed. As the machine model is non-linear, to determine with high precision the variable 
quantities like the magnetic flux, it imposes the use of some optimal closed loop estimator like the Luenberger 
state estimator is. 
 
 
2. THE CLOSED LOOP STATE ESTIMATOR 
 
The fundamental problem of a state estimator or observer is to determine, for a given system, a state variables 
set, generally non-directly measurable on the base of the input and output measurable variables.  
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It considers the linear system, input and output mono-variable, described by state-variable equations as follows: 
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The closed loop state estimator determines the components of the 
state vector x̂  on the base of the input command u and performs this 
continuous correction on the base of the principle that the estimated 
state x̂  coincides with the real one x when the error between the real 
exit y and the estimated one ŷ is cancelled. This way, the used model 
for the states estimator is corrected on the base of the error between 
the real system output and the model output calculated on the base of 
the estimated state. The structure of a closed loop estimator, is shown 
in figure 1. Through the weight matrix L it is controlled the estimated 
state convergence to real state of the controlled process. 
The estimator can be designed for the reconstruction of the whole 
state vector that completely characterizes the controlled system 
dynamics, named in this case, complete estimator, or for the 
estimation of some state variables that can’t be directly determined 
from the measured quantities, named reduced order estimator. In the 
case of some high values of the measure noise, the complete 
estimator assures a high precision as to the reduced order estimator.  
On the base of the continuous model of the linear system described by the equations (1) and by the bloc diagram 
in figure 1, it is deduced from  
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The system corresponding to the complete estimator is of the same order with the controlled physical system, 
and its output is the estimated state x̂ of the real dynamic system. The estimator can be implemented by using 
analog or digital circuits. The time-discrete model of the estimator is determined on the base of the time-discrete 
model of the controlled physical process, generally obtained through the continuous model characterized by the 
eq (1). Thus, by applying  the forward differences method, the process time-discrete model results as follows:   
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in which the matrix F, G and H could be thus estimated as 

                   CH;TBG;TAIeF ee
ATe =⋅≈⋅+≈=                    (4) 

where  Te is the sampling time. 
The estimator can be digital implemented in more many ways [3]. It is taken here into account only the estimator 
with prediction in which the estimated state )1k(x̂ +  is obtained through the correction of the predicted state    

)1k(x~ + on the base of the performed estimation at the current time step k, the estimator equation being 
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After a simple calculus, the estimator equations can have the following form:                                   
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to which corresponds the block diagram presented in figure 2.    
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It is obviously that the estimation is correct if the estimated state )t(x̂  coincides with the real state x(t) of the 
process, and if the estimation error 

     )t(x̂)t(x)t(e −=                               (7) 

is very low, in its limit: 0)t(elim
t

=
∞→

. 

In the discrete form, the estimation error at  the  time step k is 

        )k(x̂)k(x)k(e −=                 (8) 

and from the relations (5) and (6), the error equation for the estimator with prediction results: 

)k(e)LCF()1k(e ⋅−=+ .                                                     (9) 

By transposing the matrix in this equation it obtains a similar structure with that of a controller 

)k(e)LCF()1k(e ttt ⋅⋅−=+                                                  (10) 

where the  superscript ‘t’ represents the transpose of the matrix. 
It results from here that, to determine the weigh matrix L is an allocation problem to obtain the desired dynamic 
performances for the system characterized by eqn (10). For the zero convergence of the estimation error it is 
necessary that )k(x)k(x̂lim

k
=

∞→
and the system formed by the estimator to be asymptotic stable. For this, the 

characteristic equation of the estimator 
        0CLFIzdet =⋅+−⋅                    (11) 

needs to have the roots situated inside the unitary radius circle 1|z| j < .  
The L matrix is determined by imposing the characteristic equation roots, and the estimator poles too, to obtain 
the desired dynamic. It states that the response time of the estimator has to be at least two times larger than the 
response time of the regulator with the state estimator. 
 
 
3. ALGORITHM OF THE FLUX ESTIMATOR       
 
In order to perform a state estimator of complete order for the stator and rotor fluxes estimation of the 
asynchronous  machine, there uses the flux model with the state-variable equations of the machine in a stationary 
reference frame d-q  [4]: 
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The equations (12) have been done in rated quantities and there have been used the notations: 

G 

L 

F

z-1

u(k) 

y(k) )1k(x̂ + )k(x̂

)1k(x̂ +

)k(ŷ
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x1−=σ  – the total dispersion coefficient, x1, x2 and xm  being, respectively, the stator, rotor and 

magnetizing rated reactance. 

If there take as the command quantities the components  u1d and u1q  of the stator voltages and as output 
(measured) quantities the components i1d   and i1q  of the stator current, the complete model input-state-output of 
the asynchronous machine used for the flux estimation,  takes the following form: 
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By comparison these equations with eqns (1) of the general model, the matrix A, B, and C are obviously. 
To obtain the discrete-time model described by the eqns (3) there are used the approximation relations (4). Thus, 
it results the discrete-time model of the asynchronous machine as follow: 
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where it wrote down with d2 =1/T2   and with ν the rotor rated speed. 
Considering the complete order estimator with prediction, the block diagram of the flux observer at the 
asynchronous machine is presented in figure 3.  
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The  Fk matrix has to be updated at every 
sample step, to take into account the rotor 
speed variations. The Lk weight matrix for the 
discrete systems of the estimator is determined 
so that its poles have some imposed values, 
inside the unitary radius circle. As it depends 
on the Fk  matrix value which is on-line 
actualised, it results that the Lk matrix too has 
to be recalculated in accordance with the new 
Fk  value at every sample step. So, because the 
linear systems whose state is estimated is with 
variable parameters, the gain matrix L of the 
estimator can’t be once calculated, at the 
beginning of the algorithms and there 
constantly maintained, like in the invariant 
systems case, but it calculates at every 
sampling step. 
A solution for the on-line calculus of the Lk  -
matrix is the use of some relations that assure the proportionality between the machine poles and those of the 
estimator. These relations deduce in the continuous system case, getting the L matrix, from which, by time-
discrete conversion, results the Lk matrix. By assuring the poles proportionality, the estimator stability is assured, 
the machine model being stable regardless of the rotor speed. It is obviously that the proportionality won’t 
maintain and after time-discrete conversion, but the stability will surely maintain. Considering the L matrix of 
the follow form 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

34

43

12

21

ll
l-l
ll
ll

L                           (15) 

its terms can be calculated with the relations [4]: 
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in which  aij are the corresponding terms of the A matrix, g is the proportionality coefficient between the 
estimator poles and those of the machine and with c wrote down the ratio σx1x2/xm. This systems dynamics (and 
that of the estimator with dominant poles) is very different when the rotor speed variations. But through the 
matrix time-discrete conversion the proper values variations is in lower limits than for the time-continuous 
system. 
The proper values of the time-discrete matrix, when the rotation speed is very low, go to the unitary mod. 
Because of this, the cumulated calculus errors can determine the stability limit surpassing where the machine 
states are estimated in conformity with Luenberger estimator algorithm in numerical form.  
The algorithm of the current sate estimation of the asynchronous machine with a linear state-estimator of 
complete order  can be resumed as following:  
step 1 - the model A matrix is bringing up-to-date in conformity with the new values of the rotor speed;  
step 2 - the L matrix coefficients  calculates in conformity with the new elements of the A  matrix; 
step 3 – time-discrete conversion of the A and B matrix, getting the Gk and Fk matrix; 
step 4 -  the  Lk matrix calculates for the discreet model; 
step 5 – the new estimated state is calculated. 

The  Luenberger observer algorithm presented above was executed through Matlab/Simulink  ’’S-function“ type, 
conceived for the numerical simulation of the dynamic process regarding the estimation of the magnetic flux at 
the asynchronous machine. The components estimation of the rotor and stator fluxes is realized in a stationary 
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reference frame. The estimator uses as input quantities the components of the space phasors of the stator voltages 
u1, of the stator current i1, and the rated speed v, giving at the output the state-variables: the stator  and rotor flux 
components. The overall diagram of the MATLAB\SIMULINK simulation are shown in figure 4.  

For to study the estimator behaviour to the different speed values it is done the scalar control method (constant  
volt per hertz control method) of the asynchronous motor speed. The model used for the asynchronous machine 
allows the changes, during the simulation, of the stator and rotor resistance, of the reversal time constants of the 
stator and  rotor, 1/T1 and 1/T2, as one can see in the overall diagram shown in figure 4.  

 

Fig. 4. Overall diagram of  the  MATLAB\SIMULINK simulation. 
 

The simulation program was performed after the following stages: 
1) the no load start of the asynchronous machine at the V/Hz = const with reference speed at nominal 

value (rated speed v = 1); 
2) at the instant t = 0,4 sec a nominal value of the load torque it is applied; 
3) at the instant t = 0,5 sec it was increased the stator resistance at 1,25 of nominal value R1n; 
4) at the instant t = 0,7 sec it was increased the rotor resistance at 1,5 of nominal value R2n; 
5) at the instant t = 0,8 sec the load torque  was reduced at half ; 
6) at the instant t = 0,9 sec the stator and rotor resistance were reduced, R1 = 0,75 R1n, and R2 = 0,5R2n; 
7) at the instant t = 1 sec the  reference speed was reduced at half (v*=0,5); 
8) at the instant t = 1,2 sec  the load torque was cancelled and the stator and rotor resistances were brought 

at their nominal values; 
9) at the instant t = 1,3 sec the reference speed  was reduced at the value v* = 0,2. 

 
 
4. THE SIMULATION RESULTS. CONCLUSIONS.  
 
By the simulation program it was followed  the  analyse of the estimation precision and of the dynamic stability 
of the estimator at the variations of the speed, of the load torque and of the asynchronous machine parameters 
(the rotor and stator resistances). The obtained results, shown in figure 5, correspond to a proportionality factor g 
= 98 between the poles of the time-continuous systems of the estimator and the poles of the asynchronous motor. 
The simulation was performed at a sampling frequency of 2 kHz. 
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The study done by simulation proved a great influence of the g proportionality factor over the estimator precision 
and stability. As the simulation results presented in figure 5 show, it is proved that there are some values of the 
proportionality factor for whom the estimator stability is assured at the speed changes. 
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Fig. 5. Simulation results. 
What is all-important, is that the estimation dynamics and precision are very little affected by the variable 
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parameters change of the machine, if the proportionality factor between the estimator poles and machine ones is 
correct. The value of this proportionality factor is difficult to establish by calculus, taking into account the speed 
and machine variation parameters. The only practical possibility is its determination by simulation, followed by 
an eventually adjustment done by experimental tests. 
The study done by simulation proved a great influence of the g proportionality factor over the estimator precision 
and stability. As the simulation results presented in fig. 5 show, it is proved that there are some values of the 
proportionality factor for that the estimator stability is assured at the speed changes. What is very important, is 
that the estimation dynamics and precision are very little affected by the variable parameters change of the 
machine, if the proportionality factor between the estimator poles and machine ones is correct. The value of this 
proportionality factor is difficult to establish by calculus, taking into account the speed and machine variation 
parameters. The only practical possibility is its determination by simulation, followed by an eventually 
adjustment done by experimental tests. 
The simulation results prove that the evaluation precision decrease in the same time with the speed decrease. 
More, the evaluator stability can be easily ladosed at high values or at low values of the speed, at little changes 
regarding the proportionality factor and the samplig frequency.To choose this proportionality factor, it imposes 
the acceptance of a compromise for the evaluation precision and for the evaluation dynamics to assure the 
stability on the entire adjustment range. 
In the real, practical, situations a great influence over the evaluator precision and dynamics can have the 
measurement and system noises due to the out of precision measurements and variations of the machine 
parameters. The precise measurement of the tension and of the current regarding the PWM invertors is difficult, 
imposing the acceptance of some filters that bring supplementary delays and errors at the inverter commutation 
frequency changes. 
 
Appendix. Parameters of the asynchronous machine used for flux estimator simulation: 

Rated power = 2,2 KW 
Rated speed = 2800 r/min; 
Number of poles pair = 1; 
Stator resistance = 8,5 Ω; 
Rotor resistance related to stator = 7,8 Ω; 
Total stator inductance = 852 mH; 
Total rotor inductance related to stator = 852 mH; 
Magnetizing inductance = 815 mH. 
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