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Abstract: The paper presents an optimization procedure, based on the LMecA method, 
which allows to determine the optimum process parameters/tool geometry whose 
utilization leads to a minimum amount of springback. The analysis is made in the case 
of cylindrical deep-drawn parts.  
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1. INTRODUCTION 
 
The final shape and dimensions of the formed parts are strongly affected by the springback phenomenon. In its 
turn, springback is a function of three main categories of factors, such as material properties, process parameters 
and tools geometry. Hence, by controlling all these factors, one should control the springback amount in order to 
obtain the desired accuracy of the formed parts. For this purpose, good results could be obtained from the 
application of some methods and techniques of optimization. 
 
In this paper an optimization procedure based on the LMecA method is presented, in the case of cylindrical 
deep-drawing process. The method consists in controlled variation of the process parameters and determination 
of their effects on the geometry of 3D virtual part resulted from simulation. The investigation of the process 
parameters is based on a factorial plan of experiments. The relations between the part geometry and the process 
parameters/tools geometry are determining by means of polynomial equations (first or second degree).  
 
As result of the optimization procedure, virtual corrected tools are created, whose utilization, coupled with 
optimized process parameters, leads to a much lower springback, being thus fulfilled the conditions needed for 
proper manufacturing of the drawparts.  
 
 
2. APPLICATION OF THE LMECA METHOD IN ORDER TO REDUCE THE SPRINGBACK 
EFFECT IN THE CASE OF CYLINDRICAL DRAWN PARTS 
 
The LMecA method assumes the following six stages: 
1. Definition of the parameters that characterize the geometric deviations of the part.  
2. Selection of the process parameter which can influence the geometry of the part, and their range of variation 

to test. 
3. Choice of a linear or quadratic polynomial model and construction of an experiment design. 
4. Performing the simulations defined by the experiment design and measurement of the geometrical defects 

on the obtained virtual parts. 
5.  Calculation of coefficients of the polynomial models and verification of the models. 
6. Optimization of the process parameters in order to obtain the desired geometric parameters of the drawn 

parts.  
 
2.1 Choice of the geometric parameters of the part 
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The nominal geometry of the part and the geometric parameters whose variation will be investigated in order to 
quantify the effects of springback are presented in figure 1, where: rd is the radius of connection between the part 
flange and part sidewall, rp is the radius of connection between the part bottom and part sidewall, α is the angle of 
the flange, β is the inclination angle of part sidewall and h is the height of the part sidewall. 
 

   
                               a. theoretical profile    b. analyzed geometric parameters   

Fig. 1 Geometric parameters of the cylindrical part 
 
2.2 Choice of the process parameters 
The initial configuration of tool is presented in figure 2 and the part resulted by using this configuration is 
presented in figure 3. The used blankholder force was equal to 45kN and the punch-die clearance was set to 
1mm. Because the obtained values of geometrical parameters of the drawn part are different from the nominal 
ones, it follows to identify the process parameters that must be optimized in order to diminish the effect of 
springback. 
 

   
                  Fig. 2 Initial tools configuration           Fig. 3 Part obtained by simulation  
                                             with initial tools 
 
The selected parameters used in simulation are as fallows (figure 3): blankholder force (F), punch-die clearance 
(j), punch stroke (s), punch radius (Rp) and die radius (Rd). Their domain of variation was chosen according to 
the initial simulation results and based on their probable influence on the part geometry. These values are given 
in table 1. 
 

 
Fig. 3 Process parameters 
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Tab. 1 
                     Tested process parameters and their fields of variation  

Parameter Initial value Minimum value 
(-1) 

Maximum value 
 (+1) 

Punch radius (Rp) 6 mm 5 mm 7 mm 
Die radius (Rd) 4 mm 3 mm 5 mm 
Blankholder force (F) 45 kN 40 kN 90 kN 
Punch-die clearance (j) 1 mm 1 mm 1.5 mm 
Punch stroke (s) 30 mm 30 mm 32 mm 

 
 
2.3 Choice of the model and construction of the experiments design 
 

2.3.1 Linear optimization 
The first degree polynomial function which assumes a linear variation of the output from every input is the 
following: 
 

nxx 1-nn1,-n2112nn22110 xa   xa  xa    xa xa  a  Y +…+++…+++=     (1.1) 
where: Y represents the geometrical parameters of the part (rd, rp, α, β, h), x1 … xn represent the reduced values 
of the input parameters that must be optimized (Rp, Rd, F, j, s) and xixj represent the interactions between the 
considered factors.  
 
In order to determine the coefficients a0, a1, a2 ….an corresponding to each function, for the five analyzed factors 
sixteen numerical experiments were needed to carry out as it is shown in table 2. In this table, the levels (-1) and 
(+1) correspond respectively to the minimal and the maximal value of the parameters, as it is shown in table 1. 
The result of each simulation is a file of nodes, representing the nodes of the simulated formed part mesh, after 
the tools removing. This file was post treated in order to measure the geometric part parameters. The results are 
given in table 3.  
 

         Tab.2       Tab.3 

            
 

From the results of the experiment design, the coefficients of polynomial model of each output were calculated. 
The following equations were got: 
 

rp = 6.472+0.948Rp’-0.004Rd’+0.008F’+0.029j’-0.001s’-0.014Rp’Rd’+0.02Rp’F’-0.01Rp’j’ 
        +0.007Rp’s’-0.001Rd’F’+0.023Rd’j’-0.01Rd’s’-0.01F’j’+0.008F’s’+0.006j’s’ (1.2) 
 
 

rd =  4.448-0.009Rp’+0.099Rd’-0.008F’-0.013j’-0.025s’+0.035Rp’Rd’+0.009Rp’F’+0.009Rp’j’ 
         +0.04Rp’s’+0.028Rd’F’+0.014Rd’j’+0.009Rd’s’+0.032F’j’+0.002F’s’-0.01j’s’ (1.3) 
 
α  = 0.651-0.012Rp’-0.215 Rd’-0.04F’+0.001j’-0.013s’-0.04Rp’Rd’-0.001Rp’F’-0.04Rp’j’ 
         -0.03Rp’s’-0.001Rd’F’+0.038Rd’j’+0.042Rd’s’+0.073F’j’+0.005F’s’-0.04j’s’  (1.4) 
β  = 0.687-0.053Rp’-0.096 Rd’+0.191 F’+0.442 j’-0.08s’+0.02Rp’Rd’+0.018Rp’F’+0.025Rp’j’ 
         -0.13Rp’s’-0.13 Rd’F’+0.119 Rd’j’+0.012Rd’s’-0.1F’j’-0.03F’s’-0.02j’s’  (1.5) 
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h  =  19.880-0.946 Rp’-0.988 Rd’+0.006 F’-0.034 j’+1.045s’-0.024Rp’Rd’-0.01Rp’F’+0.007Rp’j’ 
         -0.04 Rp’s’-0.001 Rd’F’-0.02 Rd’j’-0.02Rd’s’-0.04F’j’+0.002F’s’+0.015j’s’ (1.6) 
 
In order to test the assumption of linearity of the output, a numerical simulation was carried out at the centre of 
the domain of variation (Rp= 6mm, Rd= 4mm, F = 65kN, j = 1.25mm and s = 31mm). The results of the 
simulation were compared with those obtained using the relations (1.2 – 1.6) and are presented in table 4. 

         Tab. 4 
Comparison of the results                

 Rp’ Rd’ F’ j’ s’ Values obtained from 
relations (1.2 – 1.6) 

Values obtained 
from simulation Errors 

rp 0 0 0 0 0 6.472 6.416 0.056
rd 0 0 0 0 0 4.448 4.462 -0.014
α 0 0 0 0 0 0.651 0.535 0.116
β 0 0 0 0 0 0.687 0.539 0.148
h 0 0 0 0 0 19.880 19.625 0.255

 

By analyzing the above presented results some differences could be observed between the two modalities of 
determination. Hence, the precision of the model could be improved by choosing a quadratic model. 
 
2.3.2 Quadratic optimization 
The following polynomial function of 2nd degree was considered: 
 

nnn xxaa 1-nn1,-n2112
2
n

2
111nn22110 xa   xa x...x... xa    xa xa  a  Y +…+++++++…+++=    (1.7) 

 

where: Y represents the followed values (rd rp, α, β, h), x1 … xn represent the reduced values of the input 
parameters that must be optimized (Rp, Rd, F, j, s) and xixj represent the interactions between the considered 
factors. In order to determine the coefficients of the quadratic model a number of 10 additional simulations were 
needed (table 5). The results of these simulations are given in table 6. 

                                              Tab. 6 
              Tab. 5  

   
 
 
 
 
 

 
 

The first sixteen experiments coupled with these ten new experiments allowed to calculate the coefficients of the 
quadratic model: 
 

îrp = 6.378+0.975Rp’+0.004Rd’+0.015F’+0.034j’+0.005s’-0.014Rp’Rd’+0.020Rp’F’-0.006Rp’j’ +0.007Rp’s’-   
      0.001Rd’F’+0.023 Rd’j’-0.01 Rd’s’-0.01F’j’+0.008F’s’+0.006j’s’-0.02Rp’2 -0.02Rd’2-0.013F’2-   
      0.01j’2+0.007s’2      (1.8) 
rd= 4.417+0.005Rp’+0.954Rd’+0.001F’-0.001j’-0.019s’+0.034Rp’Rd’+0.008Rp’F’+0.008Rp’j’+0.04Rp’s’+ 
       0.028Rd’F’+ 0.014 Rd’j’+0.009 Rd’s’+0.032F’j’+ 0.002F’s’-0.01j’s’-0.03Rp’2+0.091Rd’2-0.025F’2-   
       0.029j’2-0.01s’2  (1.9)   
 

α  = 0.501-0.015Rp’-0.202Rd’-0.03F’+0.010j’-0.016s’-0.04Rp’Rd’-0.001Rp’F’-0.044Rp’j’-0.03Rp’s’ – 
       0.001Rd’F’+0.038Rd’j’+0.042Rd’s’+0.073F’j’+0.005F’s’-0.04j’s’+0.097Rp’2-0.03Rd’2+0.037F’2- 
        0.001j’2+0.034s’2                     (1.10)                                 
 

β = 0.593 +0.081Rp’-0.056Rd’+0.195F’+0.383j’+0.018s’+0.019Rp’Rd’+0.017Rp’F’+0.025Rp’j’-0.013Rp’s’-  
      0.013Rd’F’+0.119 Rd’j’+0.012 Rd’s’-0.1F’j’-0.03F’s’-0.02j’s’+0.02Rp’2 -0.001Rd’2-0.198F’2+0.181j’2 
     +0.103s’2               (1.11) 
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h  = 19.899-0.987Rp’-0.951Rd’-0.014F’+0.091 j’+0.621s’-0.024Rp’Rd’-0.007Rp’F’+0.007Rp’j’ -0.04Rp’s’- 
       0.001Rd’F’-0.02 Rd’j’-0.02 Rd’s’-0.04F’j’+0.002F’s’+0.015j’s’+0.016Rp’2 -0.08Rd’2+0.023F’2-    
       0.267j’2+0.285s’2                           (1.12) 
 
In order to test the above presented relations a simulation was carried out at the centre of the domain of variation 
(Rp= 6mm, Rd= 4mm, F = 65kN, j = 1.25mm and s = 31mm). The results of the simulation were compared with 
those obtained using the relations (1.8 – 1.12) and are presented in table 7. 
 

                                              Tab. 7 
Comparison of the results                

 Rp’ Rd’ F’ j’ s’ Values obtained from 
relations (1.8 – 1.12)

Values obtained 
from simulation Errors 

rp 0 0 0 0 0 6.378 6.416 -0.038
rd 0 0 0 0 0 4.417 4.462 -0.045
α 0 0 0 0 0 0.501 0.535 -0.034
β 0 0 0 0 0 0.593 0.539 0.054
h 0 0 0 0 0 19.899 19.625 0.274

 

From the above presented results a diminution of the differences between the values obtained from the two 
modalities of determination is emphasized.   
 
 
2.4 Optimization of the tool geometry and process parameters 
The previous mathematical relations were used to determine the values of process parameters which allow to 
obtain the best values for the geometrical part parameters (as close as possible to the target values). The principle 
consists in minimizing a function equal to the sum of deviation between the theoretical and the desired output.  
In order to keep this sum positive, the deviations are squared: 
 

( ) ( ) ( ) ( ) ( )2222
d

2
p 20h0β0α4r6r −+−+−+−+−=Φ  (1.13) 

 

The function Φ presents a minimum for the values of the process parameters indicated in table 8. 
 Tab. 8 

                                       Optimum values of the tool geometry and process parameters            
 Rp 

[mm] 
Rd  

[mm] 
F  

[kN] 
j  

[mm] 
s  

[mm] 
rp  

[mm] 
rd 

[mm] 
α  
[º] 

β  
[º] 

h 
[mm]

Values resulted 
from 

optimization 
5.56 3.62 48 1 31.90 6.122 3.988 0.328 0.411 19.936

 

 
In order to validate the optimization algorithm a new simulation was performed, using as input data the 
optimized process parameters and tool geometry. The results of quadratic optimization, of finite element 
simulation and the nominal values of the part geometrical parameters are compared in table 9.  

         Tab.9 
          Comparative analysis of the results 
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A good concordance between the estimated values by minimizing the function Φ and that obtained from 
simulation could be observed. Also, the accuracy of part obtained by using the optimized process parameters/tool 
geometry is much improved compared to that obtained by using the initial process parameters/tool configuration.  
The new geometry of tool and the drawn part resulted by using this geometry are presented in figure 4 and figure 
5, respectively. 
 

 
        Fig. 4 Optimized geometry of tool                                   Fig. 5 Resulted part by using     
       and the optimized process parameters                                 the optimized tool and process parameters 
 
 
3. CONCLUSIONS 
 

a. In order to diminish the effect of springback on the part geometrical accuracy, an optimization procedure 
based on the LMecA method coupled with the finite element method was presented. The proposed method 
allows optimizing the tools geometry and process parameters in order to compensate the elastic deflections 
of the part.  

b. Good results were obtained by using the quadratic model. As result of the performed optimization, the 
deviations of geometrical parameters of the part reported to the nominal profile decreased as follows: with 
78.5% for the radius of connection between the part bottom and part sidewall rp, with 88.3% for the radius 
of connection between the part flange and part sidewall rd, with 94.8% for the height of the part sidewall h, 
with 54.2% for the flange angle α and with 51.7% for the sidewall inclination angle β. 

c. As a consequence, the presented method could be successfully used to control the springback phenomenon 
in the case of cylindrical drawn parts. 
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