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OPTIMIZATION PROCEDURE FOR THE SPRINGBACK CONTROL

Axinte Crina

University of Bacau

Abstract: The paper presents an optimization procedure, based on the LMecA method,
which allows to determine the optimum process parameters/tool geometry whose
utilization leads to a minimum amount of springback. The analysis is made in the case

of cylindrical deep-drawn parts.
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1. INTRODUCTION

The final shape and dimensions of the formed parts are strongly affected by the springback phenomenon. In its
turn, springback is a function of three main categories of factors, such as material properties, process parameters
and tools geometry. Hence, by controlling all these factors, one should control the springback amount in order to
obtain the desired accuracy of the formed parts. For this purpose, good results could be obtained from the
application of some methods and techniques of optimization.

In this paper an optimization procedure based on the LMecA method is presented, in the case of cylindrical
deep-drawing process. The method consists in controlled variation of the process parameters and determination
of their effects on the geometry of 3D virtual part resulted from simulation. The investigation of the process
parameters is based on a factorial plan of experiments. The relations between the part geometry and the process
parameters/tools geometry are determining by means of polynomial equations (first or second degree).

As result of the optimization procedure, virtual corrected tools are created, whose utilization, coupled with
optimized process parameters, leads to a much lower springback, being thus fulfilled the conditions needed for
proper manufacturing of the drawparts.

2. APPLICATION OF THE LMECA METHOD IN ORDER TO REDUCE THE SPRINGBACK
EFFECT IN THE CASE OF CYLINDRICAL DRAWN PARTS

The LMecA method assumes the following six stages:

1. Definition of the parameters that characterize the geometric deviations of the part.

2. Selection of the process parameter which can influence the geometry of the part, and their range of variation
to test.

3. Choice of a linear or quadratic polynomial model and construction of an experiment design.

4. Performing the simulations defined by the experiment design and measurement of the geometrical defects
on the obtained virtual parts.

5. Calculation of coefficients of the polynomial models and verification of the models.

6. Optimization of the process parameters in order to obtain the desired geometric parameters of the drawn
parts.

2.1 Choice of the geometric parameters of the part



MOCM 12 - Volume 2 - ROMANIAN TECHNICAL SCIENCES ACADEMY - 2006 6

The nominal geometry of the part and the geometric parameters whose variation will be investigated in order to
quantify the effects of springback are presented in figure 1, where: 14 is the radius of connection between the part
flange and part sidewall, 1, is the radius of connection between the part bottom and part sidewall, o is the angle of
the flange, B is the inclination angle of part sidewall and h is the height of the part sidewall.
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a. theoretical profile b. analyzed geometric parameters
Fig. 1 Geometric parameters of the cylindrical part

2.2 Choice of the process parameters

The initial configuration of tool is presented in figure 2 and the part resulted by using this configuration is
presented in figure 3. The used blankholder force was equal to 45kN and the punch-die clearance was set to
Imm. Because the obtained values of geometrical parameters of the drawn part are different from the nominal
ones, it follows to identify the process parameters that must be optimized in order to diminish the effect of
springback.

o lF =45kN

S
Fig. 2 Initial tools configuration Fig. 3 Part obtained by simulation
with initial tools

The selected parameters used in simulation are as fallows (figure 3): blankholder force (F), punch-die clearance
(j), punch stroke (s), punch radius (Rp) and die radius (Ry). Their domain of variation was chosen according to
the initial simulation results and based on their probable influence on the part geometry. These values are given
in table 1.
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Fig. 3 Process parameters
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Tab. 1
Tested process parameters and their fields of variation
Parameter Initial value | Minimum value | Maximum value

(-1 (+1)
Punch radius (R;) 6 mm 5 mm 7 mm
Die radius (Ryq) 4 mm 3 mm 5 mm
Blankholder force (F) 45 kN 40 kN 90 kN
Punch-die clearance (j) 1 mm 1 mm 1.5 mm
Punch stroke (s) 30 mm 30 mm 32 mm

2.3 Choice of the model and construction of the experiments design

2.3.1 Linear optimization
The first degree polynomial function which assumes a linear variation of the output from every input is the
following:

Y:ao +alxl +32X2 ++aan +312X1X2 +...+an_1,an_1Xn (11)

where: Y represents the geometrical parameters of the part (r4, 1p, 0, B, h), X, ... X, represent the reduced values
of the input parameters that must be optimized (R, Ry, F, j, s) and x;x; represent the interactions between the
considered factors.

In order to determine the coefficients ao, ay, a, ....a, corresponding to each function, for the five analyzed factors
sixteen numerical experiments were needed to carry out as it is shown in table 2. In this table, the levels (-1) and
(+1) correspond respectively to the minimal and the maximal value of the parameters, as it is shown in table 1.
The result of each simulation is a file of nodes, representing the nodes of the simulated formed part mesh, after
the tools removing. This file was post treated in order to measure the geometric part parameters. The results are
given in table 3.

Tab.2 Tab.3
N R, Ra' F’ I s Rp |Ra [ F | i s | Ip Pl [ i h
1 1 1 1 1 1 T s [ 3 [a0[ 1 [ 30 [6613] 3673 0928 [ 0252 20654
2 -1 -1 -1 +1 +1 2 & 3| 40 |15 | 32 | 5648 | 33685 |0.742 | 1.192 (225922
3 1 -1 +1 -1 +1 3 & 3 | 90 1 52 | 5608 | 3.385 | 0.742 | 1.192 | 22964
4 1 -1 +1 +1 -1 4 & 3 |90 |15 | 30 | 5589 | 3525 |0.938 | 1.565 (20619
5 1 +1 -1 -1 +1 5 & 5 | 40 1 52 | 5548 | 5.399 | 0.615 | 0.261 | 20,926
6 1 +1 -1 +1 -1 5} & 5 | 40 | 15 | 30 | 5738 | 5436 [0.523 | 1.342 [18.750
7 1 +1 +1 -1 -1 7 & 5 | 90 1 30 | 5589 | 5.456 | 0.185 | 0.368 | 18.923
8 -1 +1 +1 +1 +1 8 5 S | 90 | 15 | 32 | 5662 | 53596 [0.627 | 1.304 | 20849
9 +1 -1 -1 -1 +1 9 7 3 | 40 1 22 | FEO03 | 3.494 | 1.031 | 0.158 |20.912
10 +1 -1 -1 +1 -1 0 7 3 | 40 |15 | 30 | 7499 | 3585 [0.900 (1.443 [18.5944
11 +1 -1 +1 -1 -1 1 7 3 |90 1 30 | 7558 | 3.350 | 0.909 | 1.443 | 18,984
12 +1 -1 +1 +1 +1 12 | 7 3|90 |15 | 32 | 758584 | 3306 [0.728 | 1.424 | 20947
13 +1 +1 1 1 1 13 F |5 | 40| 1 | 30 | 7443 [ 6437 0476 | 0348 16978
14 +1 +1 1 +1 +1 14 |'F | 5 | 40|15 | 32 | 7526 [ 6437 0306 | 1382 (18310
15 +1 +1 +1 -1 +1 15 | F 5 | 90 1 2 | 7485 | 5.494 | 0.313 | 0.348 | 18.5971
16 +1 +1 +1 +1 -1 16 | 7 5 | 90 | 15 | 30 | 7560 | 5524 [0.444 | 1784 | 16833

From the results of the experiment design, the coefficients of polynomial model of each output were calculated.
The following equations were got:

rp, = 6.472+0.948R,,’-0.004R 4’+0.008F’+0.029;°-0.0015°-0.014R ,’R¢’+0.02R ,’F’-0.01R,,j’
+0.007R;,’s’-0.001R¢’F’+0.023R4’j*-0.01R¢’s’-0.01F’1’+0.008F’s’+0.006;’s’ (1.2)

rg= 4.448-0.009R,’+0.099R4°-0.008F’-0.013;°-0.0255°+0.035R ,’R4’+0.009R ,’F°+0.009R ,’j’
+0.04R;’s’+0.028R4’F’+0.014R’j°+0.009R 4’s’+0.032F’j°+0.002F’s’-0.01j’s’ (1.3)

a =0.651-0.012R,’-0.215 Ry’-0.04F*+0.001j°-0.013s’-0.04R,’Ry’-0.00 1R, "F*-0.04R )}’
-0.03R,’s’-0.001R’F’+0.038R,’*+0.042R s +0.073Fj+0.005F*s*-0.04j’s’ (1.4)
B =0.687-0.053R,’-0.096 Ry'+0.191 F’+0.442 j°-0.085’+0.02R,’Ry’+0.018R,’F*+0.025R,j’
-0.13R,’s’-0.13 RyF*+0.119 Ry’j+0.012R’s’-0.1F’j-0.03F*s°-0.02j’s’ (1.5)



MOCM 12 - Volume 2 - ROMANIAN TECHNICAL SCIENCES ACADEMY - 2006 8

h = 19.880-0.946 R,’-0.988 Ry’+0.006 F’-0.034 j°+1.0455°-0.024R,’Ry’-0.01R,’F’+0.007R ;)
-0.04 R,’s’-0.001 Ry’F’-0.02 Ry’j’-0.02R4°s’-0.04F’5°+0.002F s’ +0.0155’s’ (1.6)

In order to test the assumption of linearity of the output, a numerical simulation was carried out at the centre of
the domain of variation (R,= 6mm, Rg= 4mm, F = 65kN, j = 1.25mm and s = 31mm). The results of the
simulation were compared with those obtained using the relations (1.2 — 1.6) and are presented in table 4.

Tab. 4
Comparison of the results
R’ | R P y § Values obtained from Values obtained Errors
P d ] relations (1.2 — 1.6) from simulation
I's 0 0 0 0 0 6.472 6.416 0.056
Iy 0 0 0 0 0 4.448 4.462 -0.014
o 0 0 0 0 0 0.651 0.535 0.116
B 0 0 0 0 0 0.687 0.539 0.148
h 0 0 0 0 0 19.880 19.625 0.255

By analyzing the above presented results some differences could be observed between the two modalities of
determination. Hence, the precision of the model could be improved by choosing a quadratic model.

2.3.2 Quadratic optimization
The following polynomial function of 2™ degree was considered:

2 2
Y=a,+a;x;+a,Xx, +...+a,X, +..+a;;X] +...+3q,,X; tapX; X, +...+a XX, (1.7)

n-1,n“*n-1

where: Y represents the followed values (rq4 1,, o, B, h), X; ... X, represent the reduced values of the input
parameters that must be optimized (R, Ry, F, j, s) and x;x; represent the interactions between the considered
factors. In order to determine the coefficients of the quadratic model a number of 10 additional simulations were
needed (table 5). The results of these simulations are given in table 6.

Tab. 6

Tab. 5 Rp [Rm ]| F i s i | tm a B h
L) ’ ’ ) ) 1 =1 3 40 1 30 5613 | 3673 (0928 | 0252 | 20 654
i By Rd F 1 ) 2|85 | 3| 40 | 15 | 32 |5648 | 3385|0742 1,192 [22022
1 1719 il il il il 3|5 |3 |en 1 2 | 5608|3388 [0742 | 1192 |22 064
4 |8 |3 | 8@ | 15 | 30 |5488 | 3525|096 | 1565 |20 618
2 +1.719 i i i i 5 | 5 ey a0 | 1 32 | 5548 | 5399 (D618 | 0261 |20.928
3 D _l Tlg D D D 5] =1 5 40 15 30 5738 | 5436 (0523 | 1.342 | 18750
. 0 +1.'?19 0 0 0 7 |5 |8 | 90 1 30 | 5580 | 5456 0165 |0.368 | 18.923
0 5 | 5 [ 8| 90 | 15 | 32 |5662 | 5396|0627 (1304 20648
5 i} i} -1.719 i} i} a e s | a0 1 3z | 7505 | 3434 (1031 | 0158 (20812
T 1w | # | 3| a0 | 15 | 30 [7488 | 3385|0900 (1443 (18644
L] o o 1.719 o o " lg |3 | e 1 30 | 7558 | 3350 [0.909 | 1.443 | 18,984
7 I} I} I} -1.719 a 12 | @ | = | 90 |15 | 32 | 7594|3356 0728 | 1424 (20547
37| s | a0 1 30 | 7443 | 5437 |0 476 | D348 [ 16,978
8 o o o +1.719 ] 14 |BE| 5 | a0 | 15 | 32 |wE38 5497 | 0.306 [1.962 [18.910
'] 0 0 0 0 _-1.719 15 7 5 an 1 32 | 7485 | 5.494 | 0.313 | 0.348 | 18.971
16 7 5 a0 15 30 7560 | 5524 [0.444 | 1.784 | 166833
1[' D D D D +1 'Tlg 17 6 4 65 1.25 31 6.416 | 4.462 | 0.535 | 0.539 | 19.625
18 |4.28( 4 B5 1.25 31 4793 | 4307 (0801 | 08371 |21.799
. . . . 19 |7.72| 4 | 85 | 125 | 31 8402 | 4457 | 0708 (1378 (18017
The first sixteen experiments coupled with these ten new experime| =0 | & [228| sa | 126 | =1 |88 (331 0674 0945 (51 05
. 21 | 6 |572| 65 | 125 | 31 |B627 [ 6176|0088 | 1116 |18 151
quadratlc model: 22 | 6 | 4 |v22| 125 | 31 | 6545 | 4355 | D58 | 0.107 | 20,049
23 | 6 | 4 | 108 | 125 | 31 |B661 | 4445 | D58 0818 |19 608
24 | 5 | 4| 65 |082| 31 |B&28 | 434 | 0406|1197 |18 336

p— b 9 b 9 b b

I,= 6.378+0.975R,,’+0.004R4’+0.015F’+0.034;°+0.0055’-0.014R,’| 2= | & | 4 | &5 468 | =1 |Sk6e 4430|0525 1871 | ia s08
e ves ., s S Pl2]5|a]| s |12 |e2028|6626| 445 | 0612|0858 21,608
0.001R4’F’+0.023 Ry’5°-0.01 Ry’s’-0.01F’;’+0.008F’s’+0.006j L2z L& | 4 | 5 | 125 |32.72 | @701l 4459 | 0528 | 1.844 19,509

0.01j7*+0.007s2 (1.8)
r4= 4.417+0.005R,’+0.954R’+0.001F-0.001j°-0.0195’+0.034R "R 4’+0.008R ,"F’+0.008R,,’j>+0.04R ,’s "+

0.028R,’F’+ 0.014 Ry’j+0.009 Ry’s™+0.032Fj*+ 0.002F’s°-0.01j°s°-0.03R,,"+0.091R 4 2-0.025F -

0.029j°%-0.01s"> (1.9)

o =0.501-0.015R,’-0.202R’-0.03F*+0.010j°-0.0165°-0.04R,’R’-0.001R,"F*-0.044R’j>-0.03R,’s” —
0.001Ry’F*+0.038R’j*+0.042R ’s’+0.073F " +0.005F s’-0.04js’+0.097R,*>-0.03R *+0.03 7F**-
0.001j°*+0.034s>> (1.10)

B =0.593 +0.081R,’-0.056R+0.195F +0.383j°+0.0185’+0.019R,’R;’+0.01 7R, ’F*+0.025R,,’j’-0.013R,’s -

0.013Ry’F*+0.119 Ry’j+0.012 Ry’s’-0.1F*j*-0.03Fs°-0.02;’s’+0.02R > -0.00 1 R**-0.198F*+0.181;>
+0.103s”> (1.11)



MOCM 12 - Volume 2 - ROMANIAN TECHNICAL SCIENCES ACADEMY - 2006 9

h =19.899-0.987R,’-0.951R*-0.014F*+0.091 j*+0.6215’-0.024R,’R4’-0.007R,, F*+0.007R,)’j* -0.04R,’s -
0.001R’F’-0.02 Ry’j°-0.02 Ry’s’-0.04F’+0.002F’s’+0.015j’s’+0.016R,, " -0.08R 4*+0.023F -
0.267j7*+0.285s* (1.12)

In order to test the above presented relations a simulation was carried out at the centre of the domain of variation

(Rp=6mm, Rq= 4mm, F = 65kN, j = 1.25mm and s =3 Imm). The results of the simulation were compared with
those obtained using the relations (1.8 — 1.12) and are presented in table 7.

Tab. 7
Comparison of the results
R’ | Ry F i § Values obtained from Values obtained Errors
P d relations (1.8 —1.12) from simulation
I 0 0 0 0 0 6.378 6.416 -0.038
Iy 0 0 0 0 0 4.417 4.462 -0.045
o 0 0 0 0 0 0.501 0.535 -0.034
B 0 0 0 0 0 0.593 0.539 0.054
h 0 0 0 0 0 19.899 19.625 0.274

From the above presented results a diminution of the differences between the values obtained from the two
modalities of determination is emphasized.

2.4 Optimization of the tool geometry and process parameters

The previous mathematical relations were used to determine the values of process parameters which allow to
obtain the best values for the geometrical part parameters (as close as possible to the target values). The principle
consists in minimizing a function equal to the sum of deviation between the theoretical and the desired output.
In order to keep this sum positive, the deviations are squared:

2 2 2 2 2
®=(r, ~6 +(rg = 4) +(a—0)> +(B—0)* +(h —20) (1.13)
The function @ presents a minimum for the values of the process parameters indicated in table 8.
Tab. 8
Optimum values of the tool geometry and process parameters
R, Ry F j S rp Iy a B h
[mm] [mm] [kN] | [mm] [mm] | [mm] | [mm] | [°] [l | [mm]
Values resulted
from 5.56 3.62 48 1 31.90 | 6.122 | 3.988 |0.328| 0.411 {19.936
optimization

In order to validate the optimization algorithm a new simulation was performed, using as input data the
optimized process parameters and tool geometry. The results of quadratic optimization, of finite element
simulation and the nominal values of the part geometrical parameters are compared in table 9.

Tab.9
Comparative analysis of the results

. Ip Iy i 13 h

o | Fa | F 10 [ % | fon] {fwnd | 1| [] |fem]
Values resulied

by using initial B 4 45 1 3 6,522 4802 |0.528| 0784 | 17 A9

‘ool design | (MM | (mm] [ (kW] [ imm) [ (mm)

Values resulied

from DOF 5 5R R a8 1 71 40 6,122 3028 10322 0411 (19936
Values resulied

from (mra] | (] | [kM] | [ram] | [mm] | 6005 | 4062 [0.286)| 0.405 |20.122
simulation

Mominal values &.000 4.000 (0000 0.000 |20.000
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A good concordance between the estimated values by minimizing the function ® and that obtained from
simulation could be observed. Also, the accuracy of part obtained by using the optimized process parameters/tool
geometry is much improved compared to that obtained by using the initial process parameters/tool configuration.
The new geometry of tool and the drawn part resulted by using this geometry are presented in figure 4 and figure
5, respectively.

I
l —f=—0405

! 4062— | ’
‘ RE.EG-\) lF=48 T 0.286

[ R 20122
! 2190 Fm.ez 1__1_

I — 103
: |

1 :
Fig. 4 Optimized geometry of tool Fig. S Resulted part by using
and the optimized process parameters the optimized tool and process parameters

3. CONCLUSIONS

a. In order to diminish the effect of springback on the part geometrical accuracy, an optimization procedure
based on the LMecA method coupled with the finite element method was presented. The proposed method
allows optimizing the tools geometry and process parameters in order to compensate the elastic deflections
of the part.

b. Good results were obtained by using the quadratic model. As result of the performed optimization, the
deviations of geometrical parameters of the part reported to the nominal profile decreased as follows: with
78.5% for the radius of connection between the part bottom and part sidewall r,, with 88.3% for the radius
of connection between the part flange and part sidewall ry, with 94.8% for the height of the part sidewall h,
with 54.2% for the flange angle o and with 51.7% for the sidewall inclination angle f3.

c. As a consequence, the presented method could be successfully used to control the springback phenomenon
in the case of cylindrical drawn parts.
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