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Abstract: Nut deformation, which is the main cause of the tightening characteristics loss in a 
threaded assembly, was analytical and experimental analyzed. A method for the analysis of nut 
radial deformation was proposed. The performed experiments confirmed the validity of this 
method and the main conclusion of this paper is that the tightening stress generates a 
contraction radial deformation on the nut frontal surface, which leads to the increasing of the 
assembly strength.   

 
 
1. Introduction 
Many years it was considering that the diminishing of the threaded assemblies is due to the elasto-plastic 
deformations of the nut and screw threads. Different studies were performed in this sense but their principal goal 
was to estimate the assembly elasticity constant in the case of compression or pulsatory loading. The method 
proposed in this work allows the analysis of radial deformations of three types of nuts and the performed 
experiments confirm the method validity.  
 
2. Theoretical analysis 
It is considered that the forces equilibrium from fig. 1,a  was replaced with an axial force q(z) and a radial one 
p(z), which act on the inner surface of nut as in fig. 1,b and fig. 1,c. The relation between q(z) and p(z) could be 
obtained from the equilibrium of forces which act on the thread  flanks as in fig. 2,a, resulting: 
 

p(z)/q(z) = tan(α-ρ) 
  
where: α is half of the thread angle and ρ is the friction angle.  
 

P(z) = Fnsinα – Fncosα, q(z) = Fnsinα + Fncosα, μs = tanρ. 
 

 
 
Fig. 1 Forces equilibrium     Fig.2 Ratio p(z)/q(z) on the 
                                                                                                            thread surface 
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In fig. 3 a simplified model of nut with inner diameter 2a, external diameter 2b and height h is presented. 
 

 
 
Fig. 3 Coordinate system of nut   ν – Poisson’s coefficient 
 
When on the inner surface of thread act the symmetric axial forces q(z) and p(z), the function  Ф is [3]: 
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where βn= (2n-1)π/2h, I0 ( )rnβ , I1 ( )rnβ K0 ( )rnβ   are the first two Bassel  functions of order zero and one and 
an ……dn are undetermined coefficients. By replacing equation 3 in equation 2 results: 
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In this paper, the undetermined coefficients are chosen by points method in order to satisfy the boundary 
condition expressed by equation 5: 
 

(I) At  r=a:  τ1,2.=q(z),  σr=-p(z), -p(z)/q(z) = -tan (α-p) 
(II) At  r=b:  τ1,2.=0,      σt=0,     (5) 
(III) At  x=0:  τ1,2.=τrz(r),  σz=σz(t)(r), 
(IV) At  z=h:  τ1,2.=0,    σz=0, 
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Where q(z) and p(z) show the load distribution on the thread flanks. The relation between q(z) and the axial 
force Q is: Q = 2πaq(z)dz  σz(r)  for z = 0, under the boundary condition given by equation 5.  
 
The pressure τrzo (r) is equivalent with the friction force and could be obtained as follows: firstly, the σzo (r) 
distribution is obtained in absence of friction and τrzo (r) is recalculated with equation τrz(r)=μw(r) σz0(r) where μw 
(r) is the friction coefficient obtained from the equation τrz0 (r) , where μw is the maximum value of the friction 
coefficient. In the absence of friction, the boundary condition given by the eq. 5 for μs = μw = 0 could be written: 
-p(z)/q(z) = -tanα end τrz0 (r) = 0 for z=0. 
 
The function Ф from eq. 3 consists of a finite number of terms (n = 6) and 48 point on lines, chosen such that the 
coefficients an …an (n = 1, 2, …6) could be determined. If the boundary condition from eq. 5 is satisfied, 48 
equations with 48 unknowns are obtained. The undetermined coefficients could be obtained from the equations 
solutions, and the pressure components result from eq. 4. The radial deformations U of nut could be obtained by 
introducing the pressure components into eq. 6, where E is the Young’s modulus of the nut material.  
  

( )[ ]zreE
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3. Numerical calculus and discussions 
Three nuts M 18x2,5 of different types were deformed; the normal nut (A), the nut with the increased diameter 
(B) and the tall nut (C), fig. 4. the main characteristics of these nut are given in table 1. 

 
 

Fig. 4. Example of numerical calculus 
 
For the calculus of the nuts deformations, n = 5 terms were taken in eq. 3 and m = 48 points. Positions of these 
points were chosen at the equal distances from the nut edge. In the calculus results, the values σr/q0 and τrz/q0 at 
the middle points approximate the demanded value σr/q0  = τrz/q0 = 0 because the values are smaller than ,45x10-

2. Besides, on the inner surface could be seen (fig. 5) that the calculated (plane curves lines) σr(z) and τr2(z) are 
fitted very well with theoretical q(z) and p(z) from the dash doted lines.  
 

 
  
On fig. 6 the radial deformations of the internal and external surfaces of nut are shown. From the figure results 
that the frontal surfaces and the strength surface of nut increase in radial direction under p(z) action while the 

Characteristics 
 
nut 

Inner 
diameter 
2a [mm] 

External 
diameter 
2b [mm] 

Young’s 
modulus 
E [GPa] 

Height 
h [mm] 

Poisson’s 
coefficient 

(A) normal nut 18.0 31 206 16 0.3 
(B) nut with the 
increased external 
diameter 

18.0 41 206 16 0.3 

(C) tall nut 18.0 31 206 16 0.3 
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end decreases and the strength surface increases under q(z) action. Thus, the nut obeys to contractions on the 
radial direction to the frontal surfaces and to increasing of the strength surface due to the deformations overlap. 
In order to verify experimentally the obtained results, two nuts were tested to traction, on a traction testing 
universal machine. The radial deformations were determined by using an electronic micrometer. In fig. 7 the 
comparative analysis between the experimental and calculated results for the radial deformations of the external 
surface of nut is presented. It could be observed that all calculated elements coincide with the experimental ones, 
excepting the tall nut for which a uniform distribution of load in screw-nut assembly it was considered.  
 

 
 
Fig. 5 Pressure distribution on the boundary surfaces of the thread Fig.6 
 
 
 
Axial tension Q = 27kN  

Nut 1 
Nut 2 

Calculated values 
                μs = μw = 0,1 

----------     μs = μw = 0 
 
Fig. 7 Comparative analysis of the results 
 
 
4. Conclusions 
In order to analyze the nut deformation, a method which 
divides the action force into two components (radial and axial) 
was proposed. 
The calculated values for the radial deformations of nut coincide with the experimental ones. 
It is evident that the nut deformation is due to the overlap of two deformations: radial and axial, respectively. 
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