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Abstract: A proposal of a new model of macro element used to analyse the ship hull 
torsion – closed section – as thin walled beam using macro elements is treated. The outline 
of the section is considered as polygonal one. The material is considered as an orthotropic 
one. For a straight line portion of cross section outline is corresponding a longitudinal strip 
plate. Due to the warping torsion of the thin walled beam, in the strip plate the stretching-
compression, bending and shearing occur. The stiffness matrix of the macro-element is 
obtained by assembling the stiffness matrices of the strips.In the local strength analysis of 
the ship hull, the local loading is supposed to be known. These loadings occur from the 
global strength of the ship hull. An important loading of the ship hull is torsion treated as 
thin walled beam (frequently as closed section).  
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1. INTRODUCTION 
 
In the local strength analysis of the ship hull the local loading is supposed to be known. These loadings occur 
from the global strength of the ship hull. An important loading of the ship hull is torsion treated as thin walled 
beam (frequently as closed section). In the following a proposal on the ship hull torsion using macro-elements is 
presented. 
 
Appropriate behavior of the thin-walled beams with closed cross-section requires no deformation of the cross-
section contour of the beam. To satisfy this requirement, used technique is to add transversal stiffening elements.  
 
It was noticed a very strong tendency for contour deformation when the condition of no distortion of the cross-
section plane is enforced. In order to eliminate the contour deformation, the stiffening elements have to be very 
stiff in the transversal plane and the distance between elements to be small.  
 
2. HYPOTHESIS AND CONSEQUENCES  
 
Let us consider a thin-walled beam with closed cross-section under warping torsion load. To each side of the 
polygonal contour Γ  (Figure 1) correspond a strip-plate of constant thickness. Let us denote O as the torsion 
centre and O∗ as the neutral sectorial point. We associate two type reference systems: 1) global reference system 
OXYZ with the axis OX  directed along the longitudinal axis of the beam, 2) local reference system 

0
k k k kF x y z for each stripe-plate , 0

k kF x  is parallel to OX . We make the following assumptions : 
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a) The composite material of ship hulls (orthotropic stripe-plates) is linear elastic with the longitudinal modulus 
of elasticity E  in OX  direction, the transversal modulus of elasticity  G  in  0

k k kF y z  planes; one direction of 

orthotropy is OX ,other is 0
k kF y . 

 
b) The tangential stresses acting in the transversal cross-section of the beam are oriented parallel to the median 
line Γ  and are constant over the entire thickness of the wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) The median line Γ  of one cross-section is displaced with respect to the crossing plane, but its projection on 
this plane is unchanged. As aconsequence, for small displacements, the displacement v  tangent to Γ is expressed 
as:  
 

                        ( ) ( )( , )v x s r s xϕ=                                                                 (1) 
 
where ( )xϕ  is the angle of rotation of the cross section and ( )r s is the distance from O to the tangent to the 

median line Γ . 
 
d) The component u of the displacement of points F  that is parallel to OX  is considered constant over the 
thickness of the wall but is not necessarily constant over the entire cross-section or over the length of the beam.  
We assume that u is proportional to the generalized sectorial co-ordinate ω̂  evaluated to O andO∗ . Different 
from classical theory ([1]) or Benscoter theory ([2],[3]) we assume ([4],[5]) that  u is proportional to the rate of 
twist (Figure 2)             ( ) ( ) ( )ˆ,u x s s xω ϕ′= −                  (2) 
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The generalized sectorial co-ordinate is defined as 
       ( ) ( ) ( )ˆ ˆk k ks s sω ω ω ω ω ω= − → = −% % where : 

( ) ( )

( )

010

0 0 1

s s , = /

= / ,

s k
k i ii

n
k k k kk

s r d h r s S

s S r s ds h r

ω ω ω ω

ω ω ω

=

=Γ

= → =

= =

∑∫
∑∫

%% %

%% % �

( ) ( )10
1

s ,
s

ns k i i
k i

i ii

h hd dss s S
sδ δ δ δ= Γ

=

= → = = =∑ ∑∫ ∫%% % �
where n  is the number of strip-plates . 

 
The torsional loading of the beam generates a planar 
loading of the strip-plate . Using relations (1) end (2) 
for each strip-plate , one obtains : 
                         ( ) ( ) ,k kv x r xϕ=                              (3) 

                     ( ) ( )ˆ, ( )k k ku x y y xω ϕ′= −                    (4) 
Relations (3) end (4) defines the displacement field 

for each stripe-plate. The continuity of the 
displacement u along the jointing edges between two 

stripe-plates is embedded in relation (4). The linear 
variation of the generalized sectorial co-ordinate 

alonthe axis ky    (in the reference system 0
k k k kF x y z  associated to stripe-plate k ) may be expressed as               

 
         ( ) ( )0

1ˆ ˆ ˆ ˆ=k k k kyω ω ω ω η−+ −                                                    (5) 
  
where 1/ 2 / 1/ 2k ky hη− ≤ = ≤ , 0

1ˆ ˆ ˆ, ,k k kω ω ω −  characterize the points 0
k k k-1F , F ,F  

( )( )0
1ˆ ˆ ˆ / 2k k kω ω ω−= + . Using (5) in (4) one obtains       ( ) ( ) ( )0

1ˆ ˆ ˆ,k k k k ku x y xω ω ω η ϕ−⎡ ⎤ ′= − + −⎣ ⎦ . 

 
Using assumptions c and d the strain generated in the stripe-plate k will: 

          ( ) ( ) ( )0
1ˆ ˆ ˆ ,k k k

k k k k k k
k

u u v
x x

x y x
ε ω ω ω η ϕ γ ϕ−

∂ ∂ ∂⎡ ⎤ ′′ ′= = − + − = + = Δ⎣ ⎦∂ ∂ ∂
     where    0 /( )k kSω δΔ = % . 

 
Normal stresses kσ  appear in each stripe-plate k  due to the warping,    ( ) ( ) ( )ˆ,k k kx y E y xσ ω ϕ′′= − . These 
stresses form in each cross-section a system of distributed forces in self-equilibrium. 
 

The tangential stresses kτ associates with the deformations kγ , ( ) ( )0 1
k k

k

G
x G x

S
ω

τ γ ϕ
δ

′= =
%

.The flux of these 

stresses , k kτ δ , is constant for each section of thin-walled  beam. 
 
The differential equation of the twist angle ϕ  obtained by the Ritz method ([4]) is 

( )ˆ T TEI GI M xωϕ ϕ′′′ ′− = − where ( ) ( )
2 20 2

ˆ ˆ ˆ 1 01
ˆ ˆ ˆ, /12 , /

n
k k k k k Tk kk

I I I h I Sω ω ω δ ω ω ω ω−=

⎡ ⎤= = + − =⎢ ⎥⎣ ⎦∑ % , 

 
 
3. THIN WALLED BEAM MACRO-ELEMENT 
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Let us consider the thin-walled beam divided in segments (macro-elements) of length  L  .  The macro-elements 
may by interpret as assembly of n  stripe-plates of length L . The assembly enforces the continuity of 
displacements u along the common edges between two adjacent strip-plates. On consider the following 
interpolation for the twist angleϕ : 

 
                                    ( ) ( ) ( ) ( ) ( )1 1 3 1 2 2 4 2h L h h L hϕ ξ ξ ϕ ξ ϕ ξ ϕ ξ ϕ′ ′= + + +                                    (6) 
 
where /x Lξ = and : ( ) ( ) ( ) ( )2 3 2 3 2 3 2 3

1 2 3 41 3 2 , 3 2 , 2 ,h h h hξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= − + = − = − + = − +  
 
Let us denote [ ]T1 1 2 2, , ,ϕ ϕ ϕ ϕ ϕ′ ′=δ  and ( ) ( ) ( ) ( ) ( ) T

1 3 2 4, , ,h Lh h Lhξ ξ ξ ξ ξ= ⎡ ⎤⎣ ⎦h . Relation (6) becomes 

( ) ( )T
ϕϕ ξ ξ= h δ  

 
The continuity of the generalized coordinates ϕ  and ϕ′  in the nodal cross –sections of the macro-element 
ensures the continuity of the displacements ,k ku v at all the common edges of adjacent stripe-plates. 
 
Taking into account the assumptions made regarding the loads and strains, one may write the Hook’s law in the 
form  

=σ Dε  
 

where   [ ] [ ]T T, , ,k k k kσ τ ε γ= =σ ε  and  

0
0
E

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D  

 
For the stripe-plate  k  , the vector ε  becomes ( ),k k ϕξ η=ε B δ  where  
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The stiffness matrix of the stripe-plate is given by: 

 
( ) ( )T, ,

k
k kkV

dVξ η ξ η= ∫∫∫K B DB  

 
where kV  is the volume of stripe-plate k . After mathematical manipulations one obtains 
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The relation between the generalized forces and generalized displacements has the form ϕ =Kδ F  

where ˆ
EB SV31

n T
kk

EI GI
LL

ω

=
= = +∑K K K K% %                                                   (7) 

 
F is the loading vector reduced at the nodal cross-sections of the macro-element. 
 
The first term on the right of equation (7) corresponds to stretching/compression end bending (coupled) of the 
stripe-plates; the stripe-plates behave like Euler –Bernoulli beams. The second term corresponds to Saint -
Venant torsion of macro-element. 

 
 

4. NUMERICAL EXAMPLE 

 
 

 
 
 

Let us consider a thin-walled of length L  (Figure 3-a) with rectangular closed cross-section (Figure 3-b). The 
beam is made of composite orthotropic material that has 9 215.7 10 N/mE = × , 9 23.4 10 N/mG = ×  . The 
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distortion of the cross-section plane is prevented in sections   L/2x = ±  .    The beam has loading torques M at 
the ends.  The following numerical values were used : 

 
25 10 ma −= × , 33 10 mδ −= × , ( 6 410 mTI −= , 11 6

ˆ 5.2 10 mIω
−= × ) 

 
The thin walled beam is considered single macro-element of length L=2a .  In Figure 4 we reveal the variation 

of ratios 0ϕ ϕ    ( 0ϕ =rotation of the ends to Saint Venant torsion). 
 
This work was made within the MARSTRUCT EU Project, Contract No. TNE3-CT-2003-506141. The calculus 
is partially made within the Task  4.3 of the Project. 
 
 

REFERENCES 
 
[1] Petre, A. and Atanasiu, M. Thin-walled beams, Editura tehnica, Bucharest, Romania, (1960). 
[2]. Shakourzadeh, H., Guo, Y.Q. and Batoz, J.-L., A torsion bending element for thin-walled beams with open 
and closed cross sections, Computers & Structures, Vol.55,No.6,pp.1045-1054, (1995). 
[3]. Prokić, A., Stiffness method of thin-walled beams with closed cross-section, Computers & Structures, 81, 
39-51, (2003). 
[4]. Papangelis, J.P. and Hancock, G.J., Computer analysis of thin-walled structural members, Computers & 
Structures, Vol.56, No.1, pp.157-176, (1995). 
[5]. Musat, S.D. and Epureanu, B.I., Study of warping torsion of thin-walled beams with closed cross-section 
using macro-elements, Communications in numerical methods in engineering,Vol.12,873-884 (1996). 


